Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019

GBD 2019 Chewing Tobacco Collaborators*

Summary

Background Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control.

Methods We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period.

Findings In 2019, 273·9 million (95% uncertainty interval 258·5 to 290·9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4·72% (4·46 to 5·01). 228·2 million (213·6 to 244·7; 83·29% [82·15 to 84·42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15–19 years was over 10% in seven locations in 2019. Although global age-standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: –1·21% [–1·26 to –1·16]), similar progress was not observed for chewing tobacco (0·46% [0·13 to 0·79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (–0·94% [–1·72 to –0·14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of smoking tobacco use for the period.

Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence.

Funding Bloomberg Philanthropies and the Bill & Melinda Gates Foundation.

Introduction Effective design of tobacco-control policies and appropriate allocation of resources requires understanding patterns and trends in all types of tobacco use. Although 138 (77%) of the 180 countries committed to the aims of the WHO Framework Convention on Tobacco Control (FCTC) include smokeless tobacco in their statutes, smokeless tobacco use has been monitored in far fewer countries than has smoking tobacco use, even in places with high prevalences of smokeless tobacco use. Only 55 (31%) FCTC countries have data on adult smokeless tobacco use from the past 10 years, and only 70 (39%) have data on smokeless tobacco use among young people. Additionally, smoked and smokeless tobacco use patterns differ by demographic, socioeconomic, and cultural characteristics, so detailed information on smokeless tobacco use patterns and trends are needed to tailor interventions that best meet the needs of these different subgroups.

Monitoring of smokeless tobacco use alongside smoked tobacco use should be done for a variety of reasons, including beliefs that it is a safe alternative to smoking,
Articles

Research in context

Evidence before this study
Previous studies of smokeless tobacco use have found that both prevalence and the type of product used vary widely across countries. Studies on the health effects of smokeless tobacco products have found differences in toxicity by type of product, with chewing tobacco products being the most harmful. Limitations of available survey data have posed a challenge to estimating internally consistent and comparable estimates of product-specific prevalence, disaggregated by location, age, sex, and time period. These limitations have made it difficult to form a comprehensive, global picture of where chewing tobacco is used most, among which age groups and sexes, and how this has changed over time.

Added value of this study
This study, based on results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, is the first global analysis of prevalence of chewing tobacco use by age, sex, and time period that incorporates information from available nationally representative surveys with questions about smokeless tobacco use. To address the challenge of heterogeneous survey data, of which little were available, we developed and implemented a new approach to combining different definitions and sources of smokeless tobacco prevalence data across locations to mitigate the effects of compositional bias in the available data. These methods improved estimates, particularly in locations that have less chewing tobacco-specific data but do have data on other smokeless tobacco products. This modelling approach allowed for the use of data sources, integral to producing improved estimates by age, sex, and location, across which prevalence of chewing tobacco use varies widely. Finally, we compared trends in chewing tobacco with trends in smoking prevalence. The difference in trends over time between prevalences of chewing and smoking tobacco indicates that tobacco control efforts and policies have had a much larger effect on the prevalence of smoking tobacco use than on the prevalence of chewing tobacco use.

Implications of all the available evidence
Monitoring of prevalence of chewing tobacco use would benefit greatly from concerted efforts to add questions about its use in surveys that clearly distinguish the types of products, in a similar way to what is done for smoking tobacco. We found that the prevalence of chewing tobacco use has remained fairly stable over time and is high in many regions and demographic groups, including those with historically lower prevalence of smoking tobacco. Increased commitment to control of smokeless tobacco through both local interventions and expansion of the policies outlined in the WHO Framework Convention on Tobacco Control articles to smokeless tobacco products is urgently needed.

beliefs about a variety of benefits (eg, for morning sickness), and local distribution and production. Moreover, smokeless tobacco is less regulated than smoked tobacco. Tobacco manufacturers can sell smokeless tobacco products that are sweeter or flavoured and aimed at new users, and these products are usually cheaper than cigarettes. A wide array of products is available in the market, but data on smokeless tobacco use are often not collected by specific products or subtypes, further complicating monitoring and regulation. Although all smokeless tobacco products are consumed through the mouth or nose without burning, the wide variety of products are used in different ways and are associated with varying degrees and types of harm. This study focuses on chewing tobacco use, because the associated health risks are well documented. Many studies have found strong evidence for the increased risk of oral cancer due to chewing tobacco.

In this context, we aimed to provide an improved understanding of chewing tobacco use, which is essential for targeted policy, assessment of the effectiveness of these policies, and, ultimately, mitigation of the associated harms. Studies have been done previously that estimated prevalence for a particular country, region, or source, or a restricted time period or age group, but to our knowledge no attempt has been made to synthesise multiple data sources to understand these trends globally over time and across age groups. For the first time, as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we comprehensively estimated the prevalence of chewing tobacco use using all available data sources to estimate age-sex-specific prevalence of chewing tobacco use from 1990 to 2019 in 204 countries and territories. We also compared these trends with those of smoked tobacco over the same time period. This manuscript was produced as part of the GBD Collaborator Network and in accordance with the GBD Protocol.

Methods

Overview and definitions
We modelled prevalence of current chewing tobacco use by using data on multiple types of smokeless tobacco use. We defined current chewing tobacco use as use of chewing tobacco products within the past 30 days on either a daily or occasional basis, or current use as defined by the survey. We produced estimates for males and females separately, and for each 5-year age group between the ages of 15 and 94 years with a terminal age group of individuals aged 95 years and older. We produced estimates for every year between 1990 and 2019 and for 204 countries and territories included in GBD 2019. This study adheres to the Guidelines for Accurate and Transparent Health Estimates Reporting.
Because data on chewing tobacco alone are sparse, we systematically reviewed, extracted, and included in our estimations data on all types of smokeless tobacco. We classified data into three categories: chewing tobacco products only, non-chewing tobacco products only, and general smokeless tobacco with products not specified; we refer to this third category as unspecified smokeless tobacco. The first and second categories are distinct and do not overlap. Available data in these two categories were used to adjust data reported as general smokeless tobacco, which comprises the majority of data sources.

As a result, in our modelling process we used information from all three categories to produce our final estimates of prevalence of chewing tobacco use for all countries.

Data sources

We searched the Global Health Data Exchange for representative surveys with data on use of any smokeless tobacco product among individuals aged 10 years and older collected between 1980 and 2019. Although we report data for individuals aged 15 years and older and from 1990 onwards, we included this additional age group and decade to inform time trends and age patterns of the model. We included individual-level survey data, tabulated survey report data, and data from scientific literature. We identified and extracted data from 752 surveys that were location and year specific that met our inclusion criteria. Of 204 countries and territories, 185 (91%) had at least one data source and 58 (28%) had at least five data sources. 57 countries (28%) had their most recent data collected between 1980 and 2019. Although we maximised the use of available information, rather than constraining our analysis to only focus on sources that met our inclusion criteria, search strings, and extraction methods are purposefully tuned the parameters controlling the decay functions for age weights in the spatiotemporal smoothing step to ensure that age patterns were data driven rather than model driven. We then used the modelled estimates to generate age and sex ratios that included uncertainty and varied by location and year. We applied these ratios to the data originally reported in aggregated age groups or as both sexes combined to split the aggregated data into our target demographic groups. Additional details on these methods are in the appendix (pp 16–17).

Smokeless tobacco product mapping and generation of the prevalence model

Case definitions varied substantially across data sources. Surveys reported on 262 unique combinations of smokeless tobacco products, which we mapped to one of two mutually exclusive and collectively exhaustive categories: either chewing tobacco products or non-chewing tobacco products. Non-chewing tobacco products refers to smokeless tobacco products that are not chewing tobacco. In some cases, surveys did not specify a product, or specified a wide array of products that spanned both categories. We mapped these sources to a third category of unspecified smokeless tobacco. The product map is in the appendix (p 15). After product mapping, 170 sources reported on the prevalence of chewing tobacco use, 137 reported on the prevalence of non-chewing tobacco use, and 690 reported on the prevalence of unspecified smokeless tobacco use.

After product mapping, 141 (19%) of 752 sources reported data only in aggregated age groups or as both sexes combined. We split these data into our standard 5-year age groups by sex. To do so, we ran separate ST-GPR models for each of the product categories (chewing tobacco, non-chewing tobacco, and unspecified smokeless tobacco), using only data originally available in our standard 5-year age groups and separately by sex. In these models, we purposefully tuned the parameter controlling the decay function for age weights in the spatiotemporal smoothing step to ensure that age patterns were data driven rather than model driven. We then used the modelled estimates to generate age and sex ratios that included uncertainty and varied by location and year. We applied these ratios to the data originally reported in aggregated age groups or as both sexes combined to split the aggregated data into our target demographic groups. Additional details on these methods are in the appendix (pp 16–17).
The proportion of unspecified smokeless tobacco that is chewing tobacco varies widely across countries. For example, in Sweden, snus (pulverised tobacco for sub-labial administration, which we classify as non-chewing tobacco) is the predominant product used, while in India, most users of smokeless tobacco use chewing tobacco. To include data sources that report the prevalence of unspecified smokeless tobacco use, we needed an estimate of the proportion of unspecified smokeless tobacco that is chewing tobacco in each country.

To arrive at that proportion, first we ran separate models for chewing tobacco and non-chewing tobacco, using all available data for each indicator. Then, based on the results of these models, we estimated an age-sex-location-year-specific ratio of chewing tobacco as a proportion of chewing and non-chewing tobacco. Finally, we used this estimated ratio to adjust data reported as prevalence of unspecified smokeless tobacco use. We added the variance of the estimated ratio to the original variance of the data to reflect the uncertainty in this adjustment.

The final step in our modelling process was a ST-GPR model that included all data reported as prevalence of chewing tobacco use, and data reported as unspecified smokeless tobacco that have been adjusted on the basis of the estimated product type ratio. Because data variance is an input to ST-GPR, datapoints with higher variance had a lower influence on final estimates than did datapoints with a lower variance. As a result, the adjusted datapoints added information to the final model, but were weighted less in the final estimation than datapoints that were reported directly as prevalence of chewing tobacco use. Additional details of these methods are in the appendix (pp 18–20).

Role of the funding source
The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Results
Globally, 273.9 million (95% UI 258·5–290·9) people used chewing tobacco in 2019 (appendix pp 62–69). The global age-standardised prevalence of chewing tobacco use in 2019 among people aged 15 years and older was 4·72% (4·46–5·01) and was 6·55% (6·10–7·03) among males and 2·87% (2·60–3·14) among females (table). Most people (228·2 million [213·6–244·7]; 83·29% [82·15–84·42]) who used chewing tobacco in 2019 resided in the south Asia region. The largest populations of people who use chewing tobacco are in India (185·8 million [171·3–202·5] users; 67·83% [65·77–69·75] of global users) and Bangladesh (25·7 million [23·7–27·6]; 9·37% [8·59–10·25] of global users. Nepal, Bhutan, and Palau also had very high prevalences of chewing tobacco use in 2019, with 4·4 million (4·1–4·8) users in Nepal, 113040 (102587–123860) in Bhutan, and 3440 (3090–3819) in Palau. Among males aged 15 years and older in 2019, the age-standardised prevalence in south Asia was 24·65% (22·81–26·69), while the lowest prevalence globally was 0·17% (0·15–0·20) in southern Latin America (figure 1; appendix p 70). Similarly, the age-standardised prevalence for females in south Asia was 12·13% (10·91–13·45) in 2019, much greater than the lowest age-standardised prevalence globally, which was in western Europe (0·15% [0·14–0·17]; figure 1; appendix p 69). Outside of the south Asia region, the countries with the highest prevalence of chewing tobacco use in 2019 were, for males, Palau (25·76% [22·37–29·75]), Madagascar (16·98% [14·66–19·30]), Myanmar (14·18% [11·94–16·53]), and Sri Lanka (13·57% [11·39–15·77]; figure 1; appendix pp 30–37). For females, the highest prevalence of use was observed in Palau (24·42% [20·04–29·17]), Cambodia (12·84% [11·05–14·70]), Laos (6·73% [5·31–8·24]), and Botswana (6·54% [5·32–7·92]; figure 1; appendix pp 30–37).

Globally, prevalence of chewing tobacco use has increased slightly over time. The annualised rate of change between 1990 and 2019 for both sexes combined was 0·46% (95% UI 0·13 to 0·79), and was 0·39% (0·01 to 0·83) for males and 0·60% (0·04 to 1·11) for females (appendix p 23). We identified high-prevalence locations by ranking the age-standardised prevalence of both sexes in 1990 and 2019. Here we concentrate on the 12 countries with the highest prevalence in either 1990 or 2019, or both. Within these countries, males in Yemen and females in Palau were the only demographic groups that had significant changes in prevalence between 1990 and 2019, with a significant decrease among males in Yemen (annualised rate of change −0·94% [−1·72 to −0·14]) and a significant increase among females in Palau (1·00% [0·03 to 1·98]; table). However, for these data on males in Yemen, further investigation is needed.
into the quality of the data due to conflict in this country during the study period. Although temporal trends varied only slightly across these 12 countries, prevalence by age and sex differed much more. Globally in 2019, prevalence increased with age for females until age 80–84 years, after which it decreased, whereas for males prevalence increased up to age 35–39 years and then decreased in older age groups (appendix p 23). However, this global trend was not always reflected in the high-prevalence locations. In 2019, prevalence among males in the top 12 countries tended to decrease or flatten out in older age groups, with some countries observing peaks in prevalence in either young or middle-aged adults—eg, prevalence peaked at 52·73% (95% UI 42·13–63·31) in males aged 40–44 years in Nepal and at 42·29% (27·90–58·09) in males aged 25–29 years in Palau (figure 2). However, some countries had a more constant prevalence across age groups—eg, in Bangladesh, prevalence among males aged 20–24 years was 15·95% (95% UI 13·82–18·02) and among males aged 80–84 years was 27·23% (19·80–35·93; figure 2). Among females, prevalence often increased into older age groups. In Cambodia and Sri Lanka, prevalence of chewing tobacco use increased in each age group, with prevalences of 0·83% (0·31–1·86) in those aged 20–24 years and 35·71% (23·57–49·63) in those aged 70–74 years in Cambodia, and

Table: Prevalence and annualised rate of change between 1990 and 2019 of current chewing tobacco use in the 12 locations with the highest age-standardised prevalence of chewing tobacco use in either 1990 or 2019, by sex

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>5·37 (4·28 to 6·45)</td>
<td>16·14 (14·22 to 18·04)</td>
<td>-0·36 to -1·04</td>
<td>15·95 (13·82 to 18·02)</td>
<td>27·23 (25·14 to 29·32)</td>
<td>7·14 to 15·77</td>
</tr>
<tr>
<td>Bhutan</td>
<td>4·35 (3·70 to 5·00)</td>
<td>14·08 (11·23 to 16·95)</td>
<td>1·55 to 3·00</td>
<td>7·03 (5·97 to 8·54)</td>
<td>12·43 (11·19 to 13·67)</td>
<td>2·28 to 4·72</td>
</tr>
<tr>
<td>India</td>
<td>11·79 (9·57 to 14·18)</td>
<td>25·88 (23·64 to 28·12)</td>
<td>-0·24 to 1·00</td>
<td>14·96 (12·11 to 17·81)</td>
<td>20·04 (17·12 to 22·96)</td>
<td>0·50 to 2·15</td>
</tr>
<tr>
<td>Nepal</td>
<td>6·83 (6·88 to 7·73)</td>
<td>18·21 (16·44 to 20·04)</td>
<td>0·11 to 0·47</td>
<td>15·77 (13·94 to 17·60)</td>
<td>22·15 (19·78 to 24·52)</td>
<td>0·18 to 0·70</td>
</tr>
<tr>
<td>Pakistan</td>
<td>3·54 (4·37 to 5·15)</td>
<td>7·90 (6·92 to 8·98)</td>
<td>-0·12 to -0·04</td>
<td>7·15 (6·07 to 8·23)</td>
<td>13·93 (12·01 to 15·85)</td>
<td>0·29 to 0·60</td>
</tr>
</tbody>
</table>

Data are given to two decimal places. Data in parentheses are 95% uncertainty intervals. Countries are ordered according to GBD super-region and region. GBD=Global Burden of Diseases, Injuries, and Risk Factors Study.
Figure 1: Age-standardised prevalence of chewing tobacco use in females (A) and males (B) aged 15 years and older, in 2019
0·76% (0·29–1·66) in those aged 20–24 years, and 12·29% (4·89–24·71) in those aged 70–74 years in Sri Lanka (figure 2). Pakistan and Yemen had similar prevalences across age groups, whereas Madagascar and Palau had peaks in prevalence in females, among those aged 45–49 years in Madagascar (12·79% [6·40–22·50]) and among those aged 25–29 years in Palau (41·12% [23·31–59·80]; figure 2).

Prevalence of chewing tobacco use was often quite high at young ages. In 2019, 126 (62%) of 204 locations had higher prevalence among males aged 15–19 years than the age-standardised prevalence for males older than 19 years; among females, 135 (66%) locations had a higher prevalence among those aged 15–19 years than the age-standardised prevalence for females older than 19 years. For both sexes combined, seven locations—Marshall Islands, Federated States of Micronesia, Papua New Guinea, Bhutan, Guam, Northern Mariana Islands, and Palau—had prevalences of more than 10% in this age group (appendix pp 46–61). In 2019, south Asia and Oceania were the regions with the highest prevalence among people aged 15–19 years (figure 3; appendix p 29). Among males aged 15–19 years, the Marshall Islands had the highest prevalence of chewing tobacco use in 2019, at 32·50% (95% UI 22·82–42·74). Palau (30·55% [19·63–44·26]), Federated States of Micronesia (28·91% [19·52–39·75]), Northern Mariana Islands (27·78% [18·02–40·14]), and Bhutan (23·97% [16·34–33·82]) comprise the other top five countries for males in this age group (appendix pp 29, 43–58). The list is similar among females; the Federated States of Micronesia had the highest prevalence (22·55% [13·68–33·76]), with Northern Mariana Islands (21·62% [12·36–34·12]), Palau (20·85% [12·24–31·53]), Marshall Islands (17·04% [10·97–24·66]), and Papua New Guinea (13·24% [7·45–20·57]) comprising the rest of the top five countries among females in this age group (appendix pp 29, 43–58).

Unlike the prevalence of chewing tobacco use, the global age-standardised prevalence of smoking decreased significantly between 1990 and 2019 (annualised rate of change: −1·21% [95% UI −1·26 to −1·16]). Among females in 2019, chewing tobacco use was more common than smoking tobacco use in eight of 12 countries, and in individuals aged 15–19 years in six of 12 countries. Similarly, among males in 2019, prevalence of chewing tobacco use was higher than smoking tobacco use in three of 12 countries and in individuals aged 15–19 years in four of 12 countries (appendix pp 24–27, 46–61).

Between 1990 and 2019, among the 12 countries with the highest prevalence of chewing tobacco use, nine had significant decreases in prevalence of smoking among males and seven had significant decreases among females.
Figure 3: Age-standardised prevalence of chewing tobacco use versus prevalence of smoking among the 12 locations with the highest age-standardised prevalence of both-sex chewing tobacco use, in females (A) and males (B), in 1990–2019. Bold lines are prevalence estimates, with shaded areas showing the 95% uncertainty intervals.
(appendix pp 38–45). Among males in Nepal and India, the prevalence of chewing tobacco use surpassed the prevalence of smoking tobacco use in the past 5–10 years (figure 3). Among females, the difference in prevalence of chewing tobacco use versus prevalence of smoking tobacco use varied substantially by country (figure 3). For example, for females in Nepal and Myanmar, smoking prevalence decreased significantly over 1990–2019, whereas the prevalence of chewing tobacco use was stable over this period. In Madagascar and Palau, the prevalence of chewing tobacco use among females surpassed the prevalence of smoking tobacco in the past decade (figure 3).

Two countries in 2019 had a higher prevalence of chewing tobacco use than of smoking tobacco use among people aged 15–19 years. Among males in 2019, Uzbekistan had a significantly higher prevalence of chewing tobacco use than of smoking tobacco use (12·68% [95% UI 6·92–21·30] vs 1·65% [1·03–2·49]; 184995 [100912–310674] chewing tobacco users vs 24044 [14985–36351] smokers; appendix pp 46–61). Among females, Bangladesh had significantly higher prevalence of chewing tobacco use than smoking tobacco use (5·08% [2·24–10·01] vs 1·06% [0·42–2·15]; 402545 [177719–793059] chewing tobacco users vs 83927 [33649–162605] smokers; appendix pp 46–61).

We did a sensitivity analysis to compare our final model to a model that only used chewing tobacco data (no adjusted unspecified smokeless tobacco data). Overall, the correlation of the two estimates was 0·821, and on average our final model was 0·83 percentage points lower globally than when just using the chewing tobacco data. Additional comparisons are provided in the appendix (pp 28–29).

Discussion

In 2019, 273·9 million (95% UI 258·5–290·9) people used chewing tobacco, and age-standardised prevalence for people aged 15 and older was 4·72% (4·46–5·01). 83·29% of chewing tobacco users live in south Asia, with 185·8 million chewing tobacco users residing in India. Other countries with high prevalence of chewing tobacco use include Palau, Bangladesh, and Nepal, which together had 30·1 million chewing tobacco users in 2019. A major concern emerging from our analyses is that the prevalence of chewing tobacco use has remained constant and high. Of the 12 countries with the highest prevalences of chewing tobacco use, 11 had no significant decreases in prevalence of chewing tobacco use among males, whereas nine had significant decreases in prevalence of smoking tobacco use among males, and no countries had a significant decrease in prevalence of chewing tobacco use among females, whereas seven had significant decreases in prevalence of smoking tobacco use among females. Among females in 2019, we found that use of chewing tobacco was more common than smoking in eight of the 12 highest prevalence countries for people aged 15 years and older, and among just those aged 15–19 years in six of 12 countries. Among males, prevalence of chewing tobacco use was higher than smoking in three of 12 countries and in individuals aged 15–19 years in four of 12 countries. The serious adverse health effects resulting from chewing tobacco use necessitate stronger regulations and policies than are currently in place, particularly in countries with persistently high prevalence.

Much of the previous research on the prevalence of chewing tobacco use has focused on a particular country,21–29 region,3,4,22 source,3,18–22 or age group,5,23 making formation of a comprehensive global picture of where chewing tobacco is used most, among which age groups and sexes, and how these trends have changed over time very difficult. Our study is a step towards understanding this full picture so that policy makers, public health officials, and advocacy organisations have access to a full set of comparable estimates for use in addressing this harmful substance. Additionally, our aim to combine multiple sources and definitions of smokeless tobacco use across 204 locations has highlighted data synthesis issues due to definition variations and differences in data granularity that should be addressed in future surveillance of smokeless tobacco use.

Underscoring the importance of strengthening control on use of chewing tobacco, we found that countries with high use of chewing tobacco had almost no change in prevalence between 1990 and 2019, whereas several of these locations had significant decreases in smoking prevalence during the same period. This finding is especially true among females, in whom the prevalence of chewing tobacco use was often close to, if not larger than, the prevalence of smoking. This trend in high-prevalence countries has been noted previously,27 but our findings highlight this association over an extended time period and across the sexes. These findings might be due to a combination of factors, including less widespread application of the WHO FCTC articles on chewing tobacco,26–28 complex cultural reasons such as wider social acceptability and beliefs about associated benefits,29,30 and targeted advertising.31 Cambodia stands out as a place where the prevalence of chewing tobacco use is very high among females, particularly in comparison with among males, perhaps due to a variety of different environmental and cultural reasons.26 Because the prevalence of chewing tobacco use nears or surpasses the prevalence of smoking tobacco use in some countries, efforts must be intensified and the scope of tobacco control be expanded to explicitly address smokeless tobacco products.

Our findings also call attention to chewing tobacco use among adolescents, because seven countries had prevalences of more than 10% among people aged 15–19 years in 2019. Additionally, as observed among females, some locations with high chewing tobacco use among young people also had significantly higher prevalences of chewing tobacco use than of smoking tobacco use in 2019. These locations might be emerging markets for chewing tobacco, which should be reflected in how these countries enact the
Articles

FCTC articles. Initiation of use during youth, consumption, and patterns of use should also continue to be studied.

Our findings should be considered in the context of the limitations of the study. First, we did not quantify dual use of chewing tobacco and smoking, which is important to understand for both policy setting and burden implications. Tracking and understanding dual use might be important to uncover potential issues with targeted advertising, differential cessation success, or particularly problematic adolescent use. Second, our study relies on self-reported data and reporting biases might be present that vary across age groups, sexes, geographical regions, and socioeconomic statuses. The nature of these biases is not yet known, and previous studies indicate mixed scale and scope. However, because we measured prevalence and not amount of chewing tobacco use, under-reporting of smokeless tobacco use is unlikely to affect these results to a large degree. Third, although we aimed to better address the main limitation of modelling the prevalence of chewing tobacco use—a combination of data sparsity and compositional bias in survey questions across locations—higher quality data would improve our estimates and ensure that the location-year-age-sex ratios we used to adjust the unspecified smokeless tobacco data are accurate. Surveys that ask about locally relevant products would aid in providing estimates that are more precise and rely less on smoothing across age, time, and location. Improved questionnaires could also allow for analyses further differentiated by smokeless tobacco subtype or local products, or both, which would be beneficial for policy making. For example, a handful of Indian states banned gutkha (chewing tobacco preparation including betel nut) in 2013, which some studies have shown might have led people to purchase other types of smokeless tobacco, which cannot be captured in the current study. Additionally, both more granular data and additional data sources can help to avoid any instances where trends across age groups and over time are caused by different survey methods, although we do not believe that this limitation would substantially change our findings of this study. Future work should explore disaggregation by other subgroups beyond age and sex. For example, previous studies have shown that socioeconomic status, educational attainment, and urbanicity might affect smokeless tobacco use. Additionally, subnational analysis will be important for future studies, because local evidence is crucial to local policy setting, and previous studies have shown wide variation in the prevalence of chewing tobacco use within some countries. Specifically, an analysis of chewing tobacco use across subnational units in India should be prioritised.

Chewing tobacco use continues to persist even with many countries’ commitment to the WHO FCTC articles, and there is a large opportunity for policies and programmes to better target the use of these products. In the absence of stronger policies that are effectively implemented, these trends might stay the same as they have in the past. Additionally, the popularity of these products among adolescents, especially in places where prevalence of smoking has not historically been high, indicates the potential for these products to gain users in locations that do not currently have high use of chewing tobacco. Even as countries face competing political priorities and challenges from the tobacco industry, increased expansion, implementation, and enforcement of the WHO FCTC articles for smokeless tobacco in addition to locally targeted policies is integral to stemming the chewing tobacco epidemic.

Contributors

Please see appendix (pp 71–75) for more detailed information about individual authors’ contributions to the research, divided into the following categories: managing the estimation or publication process; writing the first draft of the manuscript; primary responsibility for applying analytical methods to produce estimates; primary responsibility for seeking, cataloguing, extracting, or cleaning data, designing or coding figure and tables; providing data or critical feedback on data sources; developing methods or computational machinery; providing critical feedback on methods or results; drafting the work or revising it critically for important intellectual content; extracting, cleaning, or cataloguing data; designing or coding figures and tables; and managing the overall research enterprise. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. PK and MR accessed and verified the underlying study data.

GBD 2019 Chewing Tobacco Collaborators

Centre for Clinical Epidemiology and Biostatistics (A Efiongb MB), Research Centre for Generational Health and Ageing (B Wuhshe MPH), University of Newcastle, Newcastle, NSW, Australia; Pediatric Dentistry and Dental Public Health Department (Prof M El Tartawi PhD), Alexandria University, Alexandria, Egypt; Department of Physiology (S Esmaeilnejad PhD), Tarbiat Modares University, Tehran, Iran; Tehran Medical Sciences Branch (S Esmaeilnejad PhD), Islamic Azad University, Tehran, Iran; Division of Non-Communicable Diseases (I Fadhil PhD), Ministry of Public Health and Population, Dubai, United Arab Emirates; Department of Health Policy and Administration (E A Faraon MD), University of the Philippines Manila, Manila, Philippines; Department of Internal Medicine (M Farwati MD, V Jain MD), Department of Cardiovascular Medicine (M M Gad MD), Cleveland Clinic, Cleveland, OH, USA; Department of Cardiovascular Medicine (M Farwati MD), Mayo Clinic, Rochester, MN, USA; Department of Environmental Health Engineering (M FazzaZehei PhD), Ardabil University of Medical Science, Ardabil, Iran; National Institute for Stroke and Applied Neurosciences (Prof V L Feigin PhD), Auckland University of Technology, Auckland, New Zealand; Research Center of Neurology, Moscow, Russia (Prof V L Feigin PhD); Psychiatry Department (I Filip MD), Kaiser Permanente, Fontana, CA, USA; School of Health Sciences (I Filip MD), AT Still University, Mesa, AZ, USA; Institute of Gerontological Health Sciences and Services and Nursing Research (F Fischer PhD), Ravensburg, Germany; Weingarten University of Applied Sciences, Weingarten, Germany; Sergio Arousa National School of Public Health, Rio de Janeiro, Brazil (L S Flor MPH); Federal University of Espirito Santo, Vitória, Brazil (L S Flor MPH); Institute of Gerontology (N A Foigt PhD), National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; Department of Child Dental Health (Prof M O Folyan FWACS), Obafemi Awolowo University, Ile-Ife, Nigeria; Department of Medical Parasitology (M Foroutan PhD), Abadan Faculty of Medical Sciences, Abadan, Iran; Gillings School of Global Public Health (M M Gad MD), Department of Epidemiology (J Y Islam PhD), University of North Carolina Chapel Hill, Chapel Hill, NC, USA; Department of Environmental Health Sciences (S Gallus DSc, A Lugo PhD), Mario Negri Institute for Pharmacological Research, Milan, Italy; Department of Public Health (B S Goberemariam MPH), Madaa Walabu University, Bale Robe, Ethiopia; Department of Nursing (B G Gebregiorgi MSc), Faculty of Nursing and Midwifery (M Gadallah PhD), National Institute of Psychosocial Medicine, (Prof A Maleki PhD), Kurdistan University of Medical Sciences, Sanandaj, Iran; Research Group for Genomic Epidemiology (N Ghith PhD), Technical University of Denmark, Copenhagen, Denmark; Medical School (Prof P S Gill DM), Division of Health Sciences (O A Uthman PhD), University of Warwick, Coventry, UK; Family Medicine Research Center (Prof J A Giniwa MD), Ministry of Health, Hail, Saudi Arabia; Health Systems and Policy Research (M Golechha PhD), Indian Institute of Public Health Gandhinagar, Gandhinagar, India; Hudson College of Public Health (S V Gopalan MPH), University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health and Social Affairs (S V Gopalan MPH), Government of the Federated States of Micronesia, Palikir, Federated States of Micronesia; Department of Public Health and Preventive Medicine (Prof M Griva PhD), Charles University, Prague, Czech Republic; Division of Cardiovascular Medicine (A Guha MD), Ohio State University, Columbus, OH, USA; Institute of Tropical Pathology and Public Health (IPTSP) (R A Guimarães MSc), Federal University of Goias, Goiânia, Brazil; Department of Epidemiology (Prof Y Guo MFSC), Beijing Medical University, Yantai City, China; Department of Epidemiology and Biostatistics (R Gupta MPH), Department of Clinical Pharmacy and Outcomes Sciences (I Yunnus PhD), University of South Carolina, Columbia, SC, USA; Centre for Noncommunicable Diseases and Nutrition (R Gupta MPH), BRAC University, Dhaka, Bangladesh;
Articles

Studying Foundation, Tiruvanndrum, India (Prof G Mini PhD); Internal Medicine Programme (Prof E M Mirrakhimov PhD), Kyrgyz State Medical Academy. Bishkek, Kyrgyzstan; Department of Atherosclerosis and Coronary Heart Disease (Prof E M Mirrakhimov PhD), National Center of Cardiology and Internal Disease, Bishkek, Kyrgyzstan; Research Center for Biochemistry and Nutrition in Metabolic Diseases (H Mirzai PhD), Kishan University of Medical Sciences, Kishan, Iran; Department of Epidemiology and Biostatistics (A Mohammadian-Hafshejani PhD), Shahrekord University of Medical Sciences, Shahrekord, Iran; Health Systems and Policy Research Unit (S Mohdammed PhD), Department of Surgery (A M Tolani FWACS), Ahmadu Bello University, Zaria, Nigeria; Clinical Epidemiology and Public Health Research Unit (L Ronfani MD), Burlo Garofolo Institute for Maternal and Child Health, Trieste, Italy; World Health Organization (WHO) Centre on eHealth (M Moni PhD), University of New South Wales, Sydney, NSW, Australia; Section of Plastic Surgery (S D Morrison MD), University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics (M Suharik MS, Prof C Yu PhD), School of Medicine (Z Zhang PhD), Wuhan University, Wuhan, China; Department of Cardiology (Prof N Naik DM, Prof A Roy MD), All India Institute of Medical Sciences, New Delhi, India; Suraj Eye Institute, Nagpur, India (V Nangia MD); Discipline of Social & Administrative Pharmacy (A A Skryabina MD), Balashiha Central Hospital, Balashikha, Russia; Myros Medical College and Research Institute (Prof S Narasimha Swamy MD), Government Medical College, Mysore, India; Department of Biotechnology (M Naveed PhD), University of Central Punjab, Lahore, Pakistan; Cardio-Aid, Bucharest, Romania (R I Negri PhD); Bupa Clemton Park (S Neupane Kandel BSN), Bupa, Sydney, NSW, Australia; Institute for Global Health Innovations (H L T Nguyen MPH, H Q Pham DMD), Duy Tan University, Hanoi, Vietnam; Institute for Mental Health and Policy (Y T Nigatu PhD), Institute for Clinical Evaluative Sciences (Ottawa, ON, Canada; Unit on Risk and Resilience in Mental Disorders (Prof D J Stein MD), South African Medical Research Council, Cape Town, South Africa (C A Najni MPHF); School of Public Health and Family Medicine (C A Najni MPH), University of Cape Town, Cape Town, South Africa; Department of Neurobiology, Care Sciences and Society (C Nowak PhD), Karolinska Institute, Huddinge, Sweden; Translational Health Research Institute (F A Ogbo PhD), Prof A M N Renzaho PhD), School of Social Sciences and Psychology (Prof A M N Renzaho PhD), Western Sydney University, Penrith, NSW, Australia; Department of Preventive Medicine (I Oh PhD), Kyung Hee University, Dongdaemun-gu, South Korea; Department of Psychiatry (A T Olagunju MD), University of Lagos, Lagos, Nigeria; Department of Respiratory Medicine (Prof M P A DNB), Jagadguru Sri Shivarathreesswara Academy of Health Education and Research, Mysore, India; Department of Health Metrics (A Pana MPH), Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India; Oral Diagnosis, Digital Health and Health Services Research (Prof F Schwendicke PhD), Charité University Medical Center Berlin, Berlin, Germany; Department of Population and Health (A Seidu MPH), University of Cape Coast, Cape Coast, Ghana; College of Public Health, Medical and Veterinary Sciences (A Seidu MPH), James Cook University,Townsville, QLD, Australia; Department of Biotechnology (Prof N Senthil Kumar PhD), Mizoram University, Aizawl, India; Department of Family Medicine (Prof S M Shah PhD), Aga Khan University, Karachi, Pakistan; Independent Consultant, Karachi, Pakistan (M A Sheikh PhD); Department of Community Medicine (M Shannawaz PhD), BLDE University, Vijayapura, India; Centre for Medical Informatics (Prof A Sheikh MD), University of Edinburgh, Edinburgh, UK; National Institute of Infectious Diseases, Tokyo, Japan (M Shigematsu PhD); Finnish Institute of Occupational Health, Helsinki, Finland (R Shiri PhD); Washington State University, Pullman, WA, USA (K Shishani PhD); Public Health Dentistry Department (Prof K M Shivakumar PhD), Krishina Institute of Medical Sciences Deemed to be University, Karad, India; Department of Public Health (N B Sidemo MPH), Department of Biomedical Sciences (J G Tadesse MSc), Arba Minch University, Arba Minch, Ethiopia; Department of Psychology (Prof I D Sigfusdottir PhD, R Sigurvinssdotr PhD), Reykjavik University, Reykjavik, Iceland; Department of Health and Behavior Studies (Prof I D Sigfusdottir PhD), Columbia University, New York, NY, USA; School of Medicine (Prof A Singh MD), University of Alabama at Birmingham, Birmingham, AL, USA; Medicine Service (Prof J A Singh MD), US Department of Veterans Affairs (VA), Birmingham, AL, USA; Department of Pulmonary Medicine (Prof V Singh PhD), Asitma Bhawan, Jaipur, India; Department of Epidemiology (D N Sinha PhD), School of Preventive Oncology, Patna, India; Department of Epidemiology (D N Sinha PhD), Healis Sektiasra Institute for Public Health, Mumbai, India; Department No.16 (V Y Skryabin MD), Laboratory of Genetics and Genomics (Prof M S Zastrozhin PhD), Moscow Research and Practical Centre on Addictions, Moscow, Russia; Therapeutic Department (A A Skryabin MD), Balashikha Central Hospital, Balashikha, Russia; Hull York Medical School (I N Sojiri PhD), University of Hull, Hull City; Division of Community Medicine (C T Sreeamarendra MD), International Medical University, Kuala Lumpur, Malaysia; Department of Medicine (P Stereopoulos MD), Democritus University of Thrace, Alexandroupolis, Greece; Department of Cardiology (S Sirotecky MD), www.thelancet.com/public-health Vol 6 July 2021 e496
University of Bern, Bern, Switzerland; Schiller Institute (Prof K Sittard PhD); Boston College, Boston, MA, USA; Barcelona Institute for Global Health, Barcelona, Spain (Prof K Sittard PhD); Department of Statistics (R Sulankatchi Abdulkader MD); Mannohannam Sundaranar University, Abishekappadi, India; National Institute of Epidemiology (R Sulankatchi Abdulkader MD), Indian Council of Medical Research, Chennai, India; Norwegians Institute of Public Health, Bergen, Norway (G Solo PhD); Department of Medical Sciences (Prof J Lundström PhD), Uppsala University, Uppsala, Sweden; The George Institute for Global Health, Sydney, NSW, Australia (Prof J Lundström PhD); Cancer Control Center (T Tabuchi MD), Osaka International Cancer Institute, Osaka, Japan; Department of Population Science and Human Resource Development (Prof M T Iqrepoque PhD), University of Rajshahi, Rajshahi, Bangladesh; Research and Development Center for Humanities and Health Management (J U Tarian PhD), National Institute of Health Research & Development, Jakarta, Indonesia; Division of Biostatistics and Epidemiology (B Thakur PhD), Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Public Health and Community Medicine (Prof K R Thakanapad MD), Central University of Kerala, Kasaragod, India; Department of Pathology and Legal Medicine (M R Tovani-Palone PhD), University of São Paulo, Ribeirão Preto, Brazil; Modestum LTD, London, UK (M R Tovani-Palone PhD); Department of Health Economics (B X Tran PhD), Hanoi University of Medical, Hanoi, Vietnam; Department of Community Medicine (J P Tripathy MD), All India Institute of Medical Sciences, Nagpur, India; Department of Cardiovascular, Endocrine-metabolic Diseases and Aging (B Umim PhD), National Institute of Health, Rome, Italy; Laboratory of Toxicology (G Vardavas PhD), University of Crete, Heraklion, Greece; Raffles Neuroscience Centre (Prof N Venketsubramanian MBBS), Raffles Hospital, Singapore, Singapore; Yong Loo Lin School of Medicine (Prof N Venketsubramanian MBBS), National University of Singapore, Singapore, Singapore; Department of Community Medicine and Family Medicine (M Verma MD), All India Institute of Medical Sciences, Bathinda, India; Department of Neurology (S Vidal MD), Infirni Hospital, Rimini, Italy; Department of Neurology & Stroke Unit (S Vidal MD), Sant’Anna Hospital, Como, Italy; Faculty of Information Technology (B Vo PhD), Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam; Center of Excellence in Behavioral Medicine (C'T Vu BA), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam; Foundation University Medical College (Prof Y Waheed PhD), Foundation University Islamabad, Islamabad, Pakistan; Demographic Change and Aging Research Area (A Werdecker PhD), Federal Institute for Poverty Research, Wiesbaden, Germany; Department of Community Medicine (N D Wrickmasinghe MD), Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka; School of Pharmacy (B Wubahset MPH), Mekelle University, Mekelle, Ethiopia; Research and Development Center for Health Services (Prof K Yamagishi MD), University of Tsukuba, Tsukuba, Japan; Department of Family Medicine and Community Health (Y Yano MD), Duke University, Durham, IL, USA; Health Services Management Research Center (Y Yazdi-Feyzabadi PhD), Department of Health Management, Policy, and Economics (Y Yazdi-Feyzabadi PhD), Kerman University of Medical Sciences, Kerman, Iran; Human Anatomy Unit (M Z Yimmer MSc), Wolof University, Dakar, Senegal; Department of Neuropsychopharmacology (N Yonemoto MPH), National Center of Neurology and Psychiatry, Kodaira, Japan; Department of Public Health (N Yonemoto MPH), Juntendo University, Tokyo, Japan; Department of Health care Management and Economics (H Yusefzadeh PhD), Urmia University of Medical Science, Urmia, Iran; School of Rehabilitation Therapy (M S Zaman MSc), Queen’s University, Kingston, ON, Canada; Addictology Department (Prof M S Zastrozhin PhD), Pediatrics Department (A Zastrozhina PhD), Russian Medical Academy of Continuous Professional Education, Moscow, Russia; Department of General Practice (J Zhang MD), University of Melbourne, Melbourne, VIC, Australia; Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia (J Zhang MD); Health Technology Assessment Unit (Y H Zuniga BS), Department of Health Philippines, Manila, Philippines; #MentalHealthPH, Quezon City, Philippines (Y H Zuniga BS).

Declaration of interests
VA reports personal fees from Bayer Healthcare; Boehringer Ingelheim/Lilly alliance, Bristol Myers Squibb/Pfizer alliance; and Novo Nordisk outside of the submitted work. RA reports consultancy and speakers’ fees from UCB, Sandoz, AbbVie, Zentiva, Teva, Laropharm, Cegedim, Angelini, B Braun, Biessen Pharma, Hofigal, AstraZeneca, and Stada. BA reports personal fees from Australian Institute of Sports, grants and non-financial support from Natural Remedies, and non-financial support from Zydus Cadila outside of the submitted work. SI reports grants from National Heart Foundation of Australia, and Australian National Health and Medical Research Council outside the submitted work. KK reports non-financial support from UGC Centre of Advanced Study (CAS II), Department of Anthropology, Panjab University, Chandigarh, India, outside of the submitted work. TRM reports contracts from Gov’t Plaintiff Lawyers, JUUL, outside of the submitted work. JAS reports consultancy fees from Crealia/Horizon, Medisys, Fidia, Two Labs Inc, Adept Field Solutions, Clinical Care Options, Clearview Healthcare Partners, Putnam Associates, Focus Forward, Navigant Consulting, Spheros, MedIQ, UBM LLC, Trio Health, Medscape, WebMD, Practice Point Communications, and the National Institutes of Health and the American College of Rheumatology; receives payment for lectures as a member on the speaker’s bureau of Simply Speaking; owns stock options in TPT Global Tech, Vaxart pharmaceuticals, and Calvete, a subsidiary of Ebola vaccine developer AegonTEC's Web Holdings; previously owned stock options in Amarin, Viking, and Moderna pharmaceuticals; held a placement on the steering committee of OMERACT, an international organisation that develops measures for clinical trials and receives arm’s length funding from 12 pharmaceutical companies; serves on the US Food and Drug Administration’s Arthritis Advisory Committee; is a member of the Veterans Affairs Rheumatology Field Advisory Committee; is the editor and is the Director of the University of Alabama at Birmingham Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis, all outside of the submitted work. JS reports ownership of companies providing services to Itim, Amgen, Janssen, Novo Nordisk, Eli Lilly, Boehringer Ingelheim, Bayer, Pfizer, and AstraZeneca outside of the submitted work. DJS reports personal fees from Lundbeck, Takeda, Johnson & Johnson, and Servier outside of the submitted work. SS reports grants from Edwards Lifesciences, Medtronic, Boston Scientific, and Abbott; and personal fees from Boston Scientific, Teleflex, and BTG outside of the submitted work. All other authors declare no competing interests.

Data sharing
To download the data used in these analyses, please visit the Global Health Data Exchange GBD 2019 website.

Acknowledgements
The authors alone are responsible for the views expressed in this Article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated or their funders. SheMA thanks the International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia and Department of Health Policy and Management, Faculty of Public Health, Kuwait University for the approval and support to participate in this research project. SKB received contributions from the Social Change Grant Program with Walden University. DAB receives support from the Oxford National Institute for Health Research (NIHR) Biomedical Research Centre (BRC). VMC acknowledges a grant (SFRH/BPD/110001/2015), through Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitoriá DL57/2016/CP1334/CT0006. MIEK was supported by University Graduate School Dissertation Year Fellowship at Florida International University. NG is employed as a postdoctoral researcher by the Technical University of Denmark and her salary is covered by a research grant from Novo Nordisk Foundation. CH, MarA, and AdP are partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation (CNCS-UEFISCDI, project number PN-III-P1-1.1.4-ST-2017-0001). CH and AdP are partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation (CND-UEFISCDI, project number PN-III-P2-1.1-SOL-2020-2-0351). JT1 is supported by UNC’s Cancer Care Quality Training 1T32CA163391-11. SMSI received funding from Deakin University.
the National Heart Foundation of Australia, and the Australian National Health and Medical Research Council. MihJ has been co-funded through a grant from the Ministry of Science Education and Technological Development of the Republic of Serbia (OI 175 014). PJ was supported by the Wellcome Trust/DBT India Alliance Intermediary Fellowship 2015–21 (IA/CPH/14/1/501497). MK has received funding from the Wellcome Trust (221854/Z/20/Z), the UK Medical Research Council (MRC 501676), and Helsinki Institute of Life Science (19790). SLKJ acknowledges institutional support by Manipal Academy of Higher Education. KK is supported by UGC Centre of Advanced Study (CAS II), awarded to the Department of Anthropology, Panjab University, Chandigarh, India. IlP acknowledges support from the UK Biobank, the NIHR Oxford BRC, and the BHF Oxford Centre of Research Excellence. IL is member of the Sistema Nacional de Investigación, which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panamá. MarIM is supported by the NIHR BRC at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. AMS acknowledges the support of the Egyptian Fullbright Mission Program. MMS-M acknowledges the support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract number 175087). AzS acknowledges the support of the Health Data Research UK BREATHE Hub. IlPS acknowledges support from the Applied Molecular Biosciences Unit (grant number UIDB/04378/2020), supported through Portuguese national funds via FCT/MCTES. AmbS is supported by the International Graduate Research Scholarship, University of Tasmania.

Editorial note: the Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.

References
28 Zaatari GS, Bazzi A. Impact of the WHO FCTC on non-cigarette tobacco products. Tob Control 2019; 28 (supplement 2): i00–12.

37 Sreeramareddy CT, Pradhan PMS, Mir IA, Sin S. Smoking and smokeless tobacco use in nine South and Southeast Asian countries: prevalence estimates and social determinants from Demographic and Health Surveys. *Popul Health Metr* 2014; 12: 22.
