Running head: Non-invasive measurement of vulnerability to embolism

Corresponding author:

Brendan Choat
University of Western Sydney
Hawkesbury Institute for the Environment
Building L3.G.08
Hawkesbury Campus
Bourke St, Richmond
2753, NSW, Australia
Tel: +61 2 4570 1901
email: b.choat@uws.edu.au

Research Area: Ecophysiology and Sustainability
Title: Non-invasive measurement of vulnerability to drought induced embolism by X-ray microtomography.

Authors:
Brendan Choat
Eric Badel
Regis Burlett
Sylvain Delzon
Herve Cochard
Steven Jansen

Institutional addresses:
University of Western Sydney, Hawkesbury Institute for the Environment, Richmond NSW 2753, Australia (B.C.); INRA, UMR 547 PIAF, F-63100 Clermont-Ferrand, France Clermont and Université (E.B. and H.C.); Université Blaise-Pascal, UMR 547 PIAF, 63000 Clermont-Ferrand, France (E.B. and H.C.); INRA, University of Bordeaux, UMR BIOGECO, F-33450 Talence, France. (R.B. and S.D.); Ulm University, Institute for Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081 Ulm, Germany (S.J.).

Summary: X-ray computed microtomography provides a high resolution, non-invasive method to evaluate vulnerability to drought induced embolism in living, intact plants.
Footnotes:
1This research was supported by the European Research Council (ERC) under Advanced Grant project TREEPEACE (grant agreement FP7-339728) and by the ‘Investments for the Future’ programme (ANR-10-EQPX-16, XYLOFOREST) from the French National Agency for Research. HC and EB thank French ANR-10-BLAN-1710 Pitbulles for travel funding for visits to the SLS. BC was supported by an Australian Research Council Future Fellowship (FT130101115) and travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron.

*Author for correspondence: Brendan Choat; email: b.choat@uws.edu.au
Abstract

Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought induced embolism are indirect and invasive, increasing the possibility that measurement artefacts may occur. Here we utilize X-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula x alba and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydrated. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula x alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess vulnerability to embolism on intact plants by direct visualization.
INTRODUCTION

The theory describing the physiological mechanism that allows plants to extract water from the soil and transport it many tens of metres in height has often been the subject of intense debate (Tyree, 2003). Plants have evolved a water transport system that relies on water sustaining a tensile force; as a result, xylem sap is at negative absolute pressures (Dixon and Joly, 1895; Melcher et al., 1998; Wei et al., 1999). However, this transport mechanism comes with its own set of problems. Most notably, water under tension is prone to cavitation, which results in the formation of gas bubbles (emboli) that block xylem conduits. Embolism reduces the capacity of the xylem tissue to deliver water to the canopy, where it is required to maintain adequate levels of cellular hydration (Tyree and Sperry, 1989). The probability of embolism occurring in the xylem increases during drought with increasing tension in the xylem sap. During prolonged and severe droughts, xylem embolism can reach lethal levels, causing branch dieback and ultimately plant death (Davis et al., 2002; Brodribb and Cochard, 2009; Hoffmann et al., 2011; Choat, 2013; Urli et al., 2013). Water stress induced embolism is now recognised as one of the principal causes of plant mortality in response to extreme drought events (Anderegg, 2014). In the face of increasingly severe droughts expected with rising global temperatures, hydraulic failure due to embolism has the potential to cause widespread dieback of trees across all major forest biomes (Choat et al., 2012).

The majority of techniques used to estimate cavitation resistance are indirect and/or invasive, increasing the possibility of artefacts occurring during measurement (Cochard et al., 2013). Artefacts relating to invasive techniques are particularly relevant in this case since xylem sap under tension is in a metastable state and may easily vaporize as a result of disturbance. Non-invasive imaging techniques offer the potential to make direct observations of xylem function in intact plants at high resolution and in real time. Non-invasive techniques include Magnetic Resonance Imaging (MRI) (Holbrook et al., 2001; Kaufmann et al., 2009; Choat et al., 2010) and, more recently, X-ray computed micro tomography (microCT) (Brodersen et al., 2010; Charra-Vaskou et al., 2012; McElrone et al., 2012). MicroCT provides superior spatial resolutions to MRI, with resolutions below 2 μm attainable for a plant stem of 4-5 mm in diameter. This allows for detailed analysis of embolism formation and repair in the xylem, including spatial patterns of embolism spread between conduits (Brodersen et al., 2013; Dalla-Salda et al., 2014).
However, non-invasive imaging techniques have seldom been used to validate indirect or invasive techniques used to estimate cavitation resistance. At this stage only a handful of studies have utilized imaging technology to measure cavitation resistance in trees (Cochard et al., 2014; Torres-Ruiz et al., 2014a) and these studies employed a destructive mode of the technique in which small branches were cut off the plant before scanning took place. Thus far, non-invasive imaging on intact plants has only been used to measure cavitation resistance in two species, *Vitis vinifera* (Choat et al., 2010; Brodersen et al., 2013) and *Sequoia sempervirens* (Choat et al., 2015). Further measurement of cavitation resistance using non-invasive imaging on intact plants across a range of species is therefore a high priority.

These comparisons are particularly important because of the current debate surrounding the invasive techniques (Cochard et al., 2013). Specifically, evidence from a variety of experiments suggests that centrifuge and air injection techniques underestimate cavitation resistance in species with long xylem vessels (Choat et al., 2010; Cochard et al., 2010; Ennajeh et al., 2011; Martin-StPaul et al., 2014; Torres-Ruiz et al., 2014a; Wang et al., 2014). This artefact occurs when samples placed into centrifuge rotors or air injection collars have a large proportion of vessels that are cut open at both ends of the segment. A number of studies have disputed this ‘open vessel’ hypothesis and suggested that some versions of the centrifuge and air injection techniques provide reliable estimates of cavitation resistance (Jacobsen and Pratt, 2012; Sperry et al., 2012; Tobin et al., 2013). Because there will always be uncertainties associated with indirect measurements, non-invasive imaging using intact plants provides the best option for resolving these methodological issues.

In this study synchrotron based microCT was utilized to investigate the formation of drought induced embolism in the xylem of intact, potted plants. Three species were selected to provide a range of contrasting xylem structures including *Quercus robur* (ring-porous), *Populus tremula x alba* (diffuse porous) and *Pinus pinaster* (tracheid bearing). Visualizations of xylem embolism in the stems of these species during a sequence of natural dehydration were used to construct embolism vulnerability curves. We hypothesised that (a) vulnerability curves based on microCT observations would match vulnerability curves based on the centrifuge technique for species with short vessels (*Populus tremula x alba*) or tracheid based xylem (*Pinus pinaster*), and (b) the centrifuge technique would over estimate vulnerability to
embolism in the long vesseled species (*Quercus robur*) due to the open vessel artefact.

RESULTS

Vulnerability curves generated with the centrifuge method were in close agreement with curves generated from microCT observations for *P. tremula x alba* and *P. pinaster* (Fig. 1; Table 1). For these two species P_{50} was not significantly different ($P > 0.05$) between curves generated by the microCT and Cavitron techniques. The estimates of P_{50} obtained for *Q. robur* by the Cavitron method (-1.38 MPa) and static centrifuge (-0.47 MPa) were significantly higher ($P < 0.05$) than P_{50} obtained from microCT observation (-4.1 MPa) (Table 1). This difference was due to variation in curve shape; the centrifuge curves for *Q. robur* exhibited a characteristic exponential shape curve in which PLC increased rapidly at high water potentials. Although both centrifuge curves for *Q. robur* were exponential in form, the P_{50} derived from the static centrifuge method was significantly ($P < 0.05$) higher than that derived from the Cavitron (Table 1). All other curves were sigmoidal, with PLC remaining close to zero until a critical threshold was reached. Vessel length analysis revealed that 19% (± 5% SE) of vessels were cut open at both ends of a 0.275 m long segment of *Q. robur*. For *P. tremula x alba*, no vessels were cut open at both ends of 0.275 m long segment.

Two and three dimensional analyses of microCT scan volumes provided detailed information on the propagation of xylem embolism during dehydration. In each of the three xylem types, ring-porous, diffuse porous and conifer, a very small percentage of secondary xylem conduits were embolised at high water status in the initial scans (Fig. 2). These embolised conduits often appeared to be isolated from other embolised conduits within the scan volume, although this could only be confirmed for *P. pinaster* (Fig. 3) because vessels in *Q. robur* and *P. tremula x alba* extended out of the scan volume. In *P. pinaster* xylem, embolism appeared first in the primary xylem adjacent to the pith and then in the inner ring of latewood tracheids. Embolised tracheids were also frequently located adjacent to resin ducts (Fig. 2). In both angiosperm and gymnosperm species, the majority of primary xylem conduits were usually embolised at high water status and prior to the first scan (Supplemental Fig. 1). With dehydration and increasing xylem tension, embolism spread from the initially embolised conduits to create patches of embolised xylem throughout the
cross section (Fig. 4). As dehydration continued these patches gradually converged until almost all conduits were embolised (Fig. 4).

DISCUSSION

Synchrotron based microCT produced excellent visualization of xylem tissue in plants for three woody plant species of differing xylem structure. Making observations on living, intact plants avoided previously identified artefacts associated with cutting (Wheeler et al., 2013; Torres-Ruiz et al., 2014b) and the presence of open vessels (Cochard et al., 2010). The high quality of signal and contrast allowed for measurement of xylem conduit dimensions to a resolution of 1.62 μm for both air and water filled conduits. This offers a dramatic improvement over MRI, which has previously been used for non-invasive assays of xylem function with spatial resolution resolutions down to 20-40 μm (Holbrook et al., 2001; Kaufmann et al., 2009; Choat et al., 2010; Wang et al., 2013). In the context of measuring vulnerability to embolism, one key benefit of achieving resolutions close to one micron is the ability to calculate theoretical hydraulic conductance from conduit dimensions. The impact of xylem embolism on hydraulic capacity can therefore be estimated with a much greater degree of confidence. MicroCT thus provides a direct and unambiguous assay of xylem functional status and serves as an excellent reference technique to assess the reliability and accuracy of destructive techniques used to estimate vulnerability to embolism (Cochard et al., 2014).

Comparison of methods to assess vulnerability to embolism

Vulnerability curves generated by the microCT observations closely matched curves based on the Cavitron technique for *P. tremula x alba* and *P. pinaster*. This demonstrates conclusively that the Cavitron technique provides an accurate and precise measure of vulnerability to embolism in these species. In contrast, centrifuge techniques significantly overestimated vulnerability to embolism in *Q. robur*, particularly in the range of xylem water potentials from -0.25 MPa to -2.5 MPa.

The converse argument, that microCT observations underestimated vulnerability in *Q. robur*, is unlikely but bears further discussion. One possibility is that the X-ray beam may cause cavitation in dehydrating samples, either by heating or X-ray absorption. However, we did not observe any cavitation resulting from repeated scans at the same scan point (Supplemental Fig. S2). Furthermore, this artefact would
be expected to cause differences in vulnerability that were in the opposite direction to those observed, i.e. microCT curves would exhibit greater vulnerability than hydraulic methods. A second possibility is that non-invasive imaging underestimates embolism because many of the cells that appear water filled are still living and therefore non-functional (Jacobsen and Pratt, 2012). In this case, all microCT observations were made late in the growing season so undifferentiated and immature conduits would be expected to make up only a very small proportion of the total stem in the juvenile wood of saplings.

Excising leaves in air for measurement of bagged leaf water potential has the potential to create embolism in the stem xylem, although the extent was very limited in older section of the stem. Removal of up to seven leaves did not result in new cavitation in the two-year section of the stem close to the base of the plant (Supplemental Fig. S2). This indicates that water potential measurements in our initial experiments would have a very limited effect on PLC calculated from microCT imaging given that all scans were made > 0.20 m below the point where leaves were collected for water potential measurements. However, removal of leaves consistently caused embolism in the xylem of current year stems when cuts were made within 0.05 m of the scan point. Overall, these results indicate that care must be taken when scans are made close to the point leaf removal and that the number of leaves collected for water potential measurements should be minimised. They also suggest that alternative techniques for measurement of water potential that do not require damage to the xylem (e.g. stem psychrometry, leaf disk psychrometry) should be considered for these experiments.

The results shown here for *Q. robur* are also consistent with earlier findings that centrifuge techniques overestimate vulnerability to embolism in species with long vessels and provide further support for the ‘open vessel’ artefact hypothesis (Choat et al., 2010; Cochard et al., 2010; McElrone et al., 2012; Martin-StPaul et al., 2014; Torres-Ruiz et al., 2014a). Consistent with this, measurements of *Q. robur* saplings indicated that over 19% of vessels were cut open at both ends in stem segments used for centrifuge measurements. The most likely cause of this artefact is that microbubbles, which move into the sample either prior to, or during the spinning phase, lead to embolism formation when they reach the centre of the sample where centrifugal forces are highest (Wang et al., 2014). This open vessel artefact has been the subject of intense debate with some researchers suggesting that the artefact only
affects the Cavitron version of the centrifuge technique and not the static centrifuge method (Christman et al., 2012; Jacobsen and Pratt, 2012; Sperry et al., 2012; Tobin et al., 2013; Hacke et al., 2015). Data from the present study demonstrate that static and spin centrifuge techniques produced similarly biased results for *Q. robur*. This finding agrees with previous work indicating that all centrifuge techniques overestimate vulnerability to embolism in long vesseled species when compared to reference curves generated by dehydration or non-invasive imaging (Torres-Ruiz et al., 2014a). The higher P_{50} observed with the static centrifuge as compared with the Cavitron is most probably due to variation in vessel length between samples (Wang et al. 2014).

Based on these results we reiterate that caution should be used when applying centrifuge based techniques to samples in which a large proportion of vessels are cut open at both ends of the segment. In the case of conifers, there is no possibility that tracheids will exceed the length of the rotor used in centrifuge measurements. Although the microCT vulnerability curve was almost identical to the centrifuge curve for *P. tremula x alba*, caution is still advised for diffuse porous species since vessel lengths are highly variable (Zimmermann and Jeje, 1981; Sperry et al., 2006) and may exceed rotor diameter in some cases.

Patterns of embolism spread with dehydration

Three dimensional analysis of scan volumes illustrated the fine spatial patterns of embolism spread within each xylem type. These spatial analyses suggest that air seeding through pit membranes was the dominant mechanism of cavitation in all three xylem types. However, a small number of isolated, embolised conduits were observed in both vessel and tracheid bearing species suggesting that other mechanisms of cavitation may also operate in the xylem (Fig. 3 and Supplemental Fig. S1).

The majority of primary xylem conduits were embolised at high water status in each of the three species (Supplemental Fig. S1). This is similar to the pattern observed in intact grapevines using MRI (Choat et al., 2010) and microCT (Brodersen et al., 2013) and extends this earlier finding across a range of xylem types. Single vessel measurements indicate that protoxylem conduits are more vulnerable to air seeding because they possess only partial secondary wall thickening and may suffer damage during extension growth, which can cause stretching and rupture of the primary cell walls (Choat et al., 2005). The secondary xylem of all species also
contained a number of embolised conduits at the initial scan point. These embolised conduits often appeared to be isolated from other air filled spaces within the scan volume. However, in the vessel bearing species (Q. robur and P. tremula x alba), vessels were always longer than the length of the scan volume (~5 mm). It was therefore not possible to verify whether apparently isolated embolised conduits were actually connected to other embolised conduits outside the scan volume. There were also numerous embolised tracheids visible in the initial scans of P. pinaster stems that were isolated from other air filled tracheids (Supplemental Fig S1). In this case we were able to verify that these embolised tracheids were completely isolated from other air spaces because tracheid lengths were less than the scan volume (Fig. 3). This suggests that these tracheids may have become embolised by a mechanism other than air seeding, e.g. defects in wall structure during initial formation, nucleation from hydrophobic surface or vapour embryos (Pickard, 1981; Tyree et al., 1994; Schenk et al., 2015). This is consistent with results of microCT observations on intact saplings of Sequoia sempervirens, which also indicated the presence of isolated, embolised tracheids (Choat et al., 2015).

With dehydration and increasing xylem tension, embolism spread from the initially embolised vessels and tracheids. This pattern is consistent with air seeding through pit membranes as the primary mechanism of cavitation in the xylem (Zimmermann, 1983; Sperry and Tyree, 1988; Cochard et al., 1992; Choat et al., 2008). Although embolism was more frequent in the inner portions of the stem during the early stages of dehydration, this pattern was not as distinct as the radial spread of embolism observed in grapevine stems (Brodersen et al., 2013). In Q. robur, dendritic bands of tracheids surrounding vessels and ray cells remained hydrated for the duration of the experiment. In contrast, fibre cells were always observed to be air filled. In the xylem of P. tremula x alba, fibres surrounding the vessels were also embolised with the exception of a band close to the cambium (Fig. 4). This is similar to the distribution of water observed by cryoSEM in the xylem of diffuse porous species growing under well watered conditions (Utsumi et al., 1998). As P. tremula x alba stems dehydrated, the water filled fibres close to the cambium gradually embolised.

In P. pinaster xylem, embolism appeared first in the primary xylem adjacent to the pith and then in the inner ring of latewood tracheids (Fig. 2). This is consistent with observations of xylem from mature Douglas fir trees, which also demonstrates
much higher vulnerability of latewood tracheids compared with earlywood (Dalla-Salda et al., 2014). Latewood tracheids may be more vulnerable to embolism because of their pit structure. Anatomical work has shown that the margo in latewood tracheids of many conifer species are inflexible and do not readily allow the torus to seal the pit aperture in the event of air entry (Domec et al., 2006). This is also apparent from the work of wood technologists, who have shown that latewood remains unaspirated in dried wood samples (Petty, 1970). Embolism spread primarily in the lateral direction, presumably because inter-tracheid pits are located almost exclusively on the radial walls of tracheids. It is likely that much of this embolism spread from the initially isolated embolised tracheid and small patches of tracheids adjacent to resin ducts. Embolism then spread in a non-contiguous fashion between rings, with some earlywood tracheids in the outer rings becoming embolised. This pattern of embolism spread suggests differential resistance to cavitation along files of tracheids in the growth ring, most probably related to variation in pit level traits (Pittermann et al., 2010; Dalla-Salda et al., 2014). Embolism then spread outwards to the cambium and back towards the pith until the majority of tracheids were embolised.

Conclusions

The results of microCT observations confirm that this technique is an excellent non-invasive method for measurement of vulnerability to embolism with the principal advantage that measurements can be made on intact plants. The high resolution of images allowed for calculation of theoretical hydraulic conductivity based on xylem conduit dimensions. We were therefore able to estimate the impact of embolised vessels and tracheid on the hydraulic capacity of each sample. The fine spatial patterns of embolism spread within the xylem could also be followed, providing insight into the way cavitation is nucleated within the xylem. The results indicated that centrifuge techniques overestimated vulnerability to embolism in ring porous Q. robur, consistent with previous reports suggesting the centrifuge suffers from an open vessel artefact when applied to long vesselled species (Choat et al., 2010; Cochard et al., 2010; Torres-Ruiz et al., 2014a). However, the centrifuge produced curves that were in excellent agreement with microCT observations for diffuse porous P. tremula x alba and the conifer P. pinaster. These results provide further evidence that the centrifuge technique is rapid and reliable method of assessing vulnerability to
embolism in species with short vessels or tracheids, but is prone to errors when a high
proportion of vessels are cut open in the measurement sample. Caution is advised
when applying this technique to species with vessel lengths that exceed the diameter
of the rotor used in centrifuge methods.

MATERIALS AND METHODS

Plant material

Ten two-years-old oak (*Quercus robur*) and five one-year-old poplar (*Populus
tremula x alba*, clone INRA 717-1B4) saplings were grown at the laboratories in
INRA Bordeaux (44°44′N, 00°46′W) and Clermont-Ferrand (45.76° N, 3.14° E),
respectively. Oak seeds were collected in a natural population in Southern France,
while poplars were multiplied clonally by in-vitro micropropagation. After potting,
the plants were gradually acclimatized in a greenhouse under well watered conditions
(irrigated twice daily, ambient light and temperature). At the time of measurement,
sapling stems ranged between 0.4 to 0.8 m high with an average diameter of 4.5 mm
at the base. Plants were moved to the SLS (Swiss Light Source, Paul Scherrer
Institute, Switzerland) and scanned in September of 2012.

In July of 2013, fifty *Pinus pinaster* saplings were ordered from PlanFor nursery
(Mont de Marsan, France). All plants were two years old at the time of purchase.
Plants were repotted into 0.7 L pots and grown for one month under well watered
conditions (irrigated twice daily, ambient light and temperature) at the Ulm University
Botanical Gardens (48.4222° N, 9.9539° E). Plants were moved to the SLS and
scanned in September of 2013. Two weeks prior to the microCT imaging, drought
stress was induced in 20 plants by cessation of irrigation. In order to facilitate
dehydration vulnerability curves, plants were dried for varying periods to produce a
range of stem water potentials. At the time of measurement plants were 0.2-0.3 m in
height and 3-5 mm diameter at the stem base. Measurements using the static
centrifuge technique were applied to another set of 2-year old *Q. robur* saplings in
March of 2015. These saplings were grown in the greenhouse under identical
conditions to the first cohort of *Q. robur* seedlings. A third cohort of *Q. robur*
saplings, which had been raised outside of the greenhouse, was used for evaluation of
leaf removal in microCT experiments.
X-ray computed microtomography

Synchrotron based computed microtomography (microCT) was used to visualize embolised and water filled conduits in the main stem axes for each of the three species. Potted plants were transported to the SLS tomography beamline (TOMCAT-X02DA). Tomographic scans were recorded during two allocations of beamtime. *Quercus robur* and *P. tremula x alba* plants were visualized in September 2012, while observations of *P. pinaster* were recorded in September 2013.

The measurement protocol used to scan living plants is described in detail in McElrone et al. (2013). Potted plants were placed in a custom-built aluminium holder that immobilized the stem and mounted on the TOMCAT sample stage. For each plant, a 5 mm section of the main stem axis was scanned approximately 0.03 m above the soil surface. Stems were positioned 30 mm from the 2D detector and secured to bamboo or birch wood skewers (3 mm diameter) in order to minimize sample movement during rotation of the stage. Plants were scanned at 20 keV in the continuous rotation mode. X-ray projections were collected at 0.12° steps with 150 ms exposure time during rotation with projection images magnified through a series of lenses and relayed onto a sCMOS camera (pco.edge 5.5, PCO, Kelheim, Germany). The scan time was less than four minutes for each sample. Samples were removed between scans and placed under LED lighting to facilitate more rapid drying of plants.

Scans yielded 1500, 2D projections per sample. Raw 2D tomographic projections were reconstructed into a single 3D volume that was then split into approximately 2000 TIF image slices using software developed at the TOMCAT beamline. The resulting images yielded images with a 1.625 μm voxel resolution. These images were analyzed in imageJ (Rasband, 2014) and Avizo 8.1.1 software (VSG, Inc., Burlington, MA) to determine the location and dimensions of embolised vessels or the cross sectional area of embolised tracheids within each sample.

For *Q. robur* and *P. tremula x alba*, scans were made on five plants per species, with plants scanned every three hours during dehydration. Plants were dried down in pots under laboratory condition at the SLS facility. A red-blue LED light source was secured 1 m above the potted plants. A fan was also used to increase the rate of dehydration in *Q. robur* plants. *P. pinaster* plants were dehydrated at the Ulm University Botanical Gardens prior to arrival at the SLS. In August 2013, plants were moved to a rainout-shelter and divided into four groups. Water was withheld for one,
two or three weeks prior to scanning, respectively for three of the groups. The fourth group was maintained in well watered conditions. Each plant was scanned once at the SLS.

Covered leaf water potential was measured on leaves or leafy twigs just prior to scans using a Scholander Pressure Chamber (Plant Moisture Stress Model 600, Albany, Oregon, USA). Leaves were covered with plastic bags and aluminium foil for at least 30 min prior to each measurement of water potential. Due to concerns regarding the impact of leaf removal for water potential measurements on cavitation in the stem xylem, another set of observations were undertaken in April 2015 at the SOLEIL microCT beamline (PSICHÉ). These measurements were conducted on 2-year old *Q. robur* plants grown at the laboratories in INRA Bordeaux (44°44′N, 00°46′W). Plants were first scanned close in the two-year old section of the stem before any leaves were removed. After 15 minutes, plants were scanned again at the same point to test whether the X-ray beam itself was causing cavitation. A leaf was then removed from the apex of the plant, between 0.20-0.25 m above the scan point and the plant was scanned for a third time after a further 15 minutes. The plant holder was then moved down and the procedure was repeated at a scan point on the current year shoot within 0.03-0.05 m of where leaves would be removed for water potential measurements. This protocol was applied to two replicate plants. These measurements indicated that (a) the X-ray beam did not induce cavitation in the stem during scans, and (b) that removal of leaves for water potential measurements had the potential to induce air entry and embolism in xylem vessels, although only in the current year growth zone within 6 cm of where the leaf was removed (Supplemental Fig. S2).

Vulnerability curves based on microCT observations

Vulnerability curves were generated from microCT by estimating the theoretical hydraulic conductance of each sample based on the conduit dimensions of embolised and functional conduits. Measurements were made on transverse slices taken from the centre of the scan volume. For angiosperm species, vessel diameters were measured manually. To increase the accuracy of vessel diameter measurements, a final scan was carried out on each stem after it had been cut in air. This ensured that all vessels were air filled at the time of scanning, increasing the contrast with surrounding tissue. For *P. pinaster* samples, a binary image was created for each transverse slice and the dimensions of tracheids were automatically measured using the “analyze particles”
function. A separate run was required to separate embolised from functional tracheids. The “watershed” function was used to assist in separating tracheids that were connected after the initial thresholding (Choat et al., 2007).

The maximum theoretical hydraulic conductance (k_{max}) of each stem was then calculated as:

$$k_{\text{max}} = \frac{\pi D^4}{128\eta} \quad (1)$$

The current hydraulic conductance (k_h) for each sample was then calculated by subtracting the summed hydraulic conductance of embolised vessels from the k_{max} of that sample. This calculation of hydraulic conductance does not include the hydraulic resistance due to pits. Assuming that pit resistance scales with lumen resistance (Choat et al. 2008), impairment of flow calculated with equation 1 should be comparable with flow rates measured directly on the plant. The theoretical percent loss of hydraulic conductance (PLC_{th}) of the sample was therefore given by:

$$\text{PLC}_{\text{th}} = 100 \times (1 - \frac{k_h}{k_{\text{max}}}) \quad (2)$$

In all cases, measurements included all secondary xylem visible in the cross section of a given sample. Primary xylem was excluded from calculations on the basis it had become previously embolised in the majority of cases. Curve fitting and analysis of curve parameters is described below.

Vulnerability curves based on hydraulic measurements

Vulnerability to xylem cavitation was assessed using two versions of the centrifuge technique; the static centrifuge method described by Alder et al. (1997) and the *in situ* flow technique (Cavitron) developed by Cochard (2002) and Cochard et al. (2005). Both techniques employ centrifugal force to generate tension in the xylem of spinning stem samples. In the Cavitron technique, the loss of hydraulic conductance is measured while the sample is spinning (under tension) in the centrifuge. In the static centrifuge technique, the sample is removed between spins to measure hydraulic conductance on the bench top. The *in situ* flow and static versions of the centrifuge technique have been shown to produce similar results (Li et al., 2008; Torres-Ruiz et
All hydraulic measurements were made with 10 mM KCl solution filtered to 0.2 μm.

Cavitron measurements were carried out on all three species while static centrifuge measurements were only conducted on *Q. robur*. Cavitron measurements were conducted on the same population of two year old *Q. robur* plants as used for microCT observations directly after the 2012 SLS beamtime allocation. Four-year old *P. pinaster* plants were measured with the Cavitron in May of 2010. Three to five replicates were measured per species at a high-throughput phenotyping platform for hydraulic traits (Cavit_Place, University of Bordeaux, Talence, France). Measurements were made using a custom-built honeycomb rotor (SamPrecis 2000, Bordeaux, France) mounted on a Sorvall RC5 superspeed centrifuge (Thermo Fisher Scientific, Munich, Germany). Cavitron vulnerability curves shown for *P. tremula x alba* 717 1B4 are based on data from Awad et al. (2010). Samples of *Q. robur* and *P. pinaster* were cut under water to a length of 0.27 m to fit into the static Cavitron rotor.

For *Quercus*, samples were flushed at ca. 0.15 MPa to remove any embolism until a stable maximum \(k_h \) value was reached prior to measurements.

Xylem pressure was first set to a reference pressure (-0.4 to -0.6 MPa) and the maximal conductance \((k_{\text{max}}) \) of the sample was determined once a stable value had been reached. The xylem pressure was then set to a more negative value for 3 min and the hydraulic conductance \((k_h) \) of the sample was again determined. The PLC at each pressure step was calculated as per Eq. 2. The procedure was repeated for more negative pressures (with 0.5 to 1.0 MPa increments) until PLC reached at least 90%.

Measurements using the static centrifuge technique were applied to another set of 2-year old *Q. robur* saplings in March of 2015. Samples were spun to five xylem tensions ranging between -0.3 MPa to -3.5 MPa. Foam pads saturated with perfusing solution were added to reservoirs in the centrifuge rotor in order to ensure that the cut ends of samples remained immersed in water during spinning (Hacke et al. 2015). Measurements of hydraulic conductance between spins were made using a Sartorius Practum analytical balance (0.01 mg resolution) connected to a computer with a custom program recording flow and computing conductance (Graviflow, Univ Bordeaux). Hydraulic conductance was calculated from the slope of three pressure heads (0.13, 0.17 and 0.20 m) following the protocol described in Torres-Ruiz et al. (2012). Pressure heads were kept low (< 0.0021 MPa) to avoid removal of embolism.
from open vessels during flow measurements. All measurements were made on the whole sample (0.27 m length) after at least two minutes of stable flow.

To facilitate comparison of Cavitron and static centrifuge vulnerability curves for *Q. robur*, k_{max} of Cavitron measurements was calculated by extrapolating from the first three measurements in the pressure series to the y-intercept. This provided an estimate of k_{max} at a pressure of 0 MPa. This was necessary because the first Cavitron measurement of k_h was taken at -0.3 MPa, a point at which substantial PLC had already occurred in the static centrifuge measurements. The offset calculated for Cavitron k_{max} allowed for both curves to be scaled to k_{max} at $\Psi = 0$ MPa. A plot of sapwood specific hydraulic conductivity (K_s) vs. xylem pressure is provided in Supplemental Fig. S3.

Curve Fitting

All vulnerability curves were fitted using a Weibull function as reparameterized by Ogle et al. (2009):

$$k = k_{\text{sat}} \left(1 - \frac{X}{100}\right)^p$$

$$p = \left(\frac{P}{P_x} \right)^{\frac{\mu S_x}{\nu}}$$

$$V = (X - 100) \ln \left(1 - \frac{X}{100}\right)$$

where k is the relative hydraulic conductivity at X% loss of conductivity, k_{sat} is the saturated hydraulic conductivity (i.e. k at 0 MPa), P is the positive-valued xylem water potential ($P = -\Psi$), P_x is the Ψ at X% loss of conductivity, and S_x is the slope of the vulnerability curve at $P = P_x$. P_{50} was defined as Ψ at 50% loss of conductivity, respectively. Eq. 3 was fit using non-linear least squares (function *nls* in R 3.0.1, R Core Team (2013). A bootstrap resampling technique was employed to calculate confidence intervals for the fitted parameters, by fitting the curve to resampled data (999 replicates). The fitting routines were implemented as an R package (*fitplc*, available from Duursma, 2014). Curves were fitted separately for each sample run in centrifuge data with P_{50} and slope parameters then calculated as the means of three to five replicates. In the Cavitron centrifuge data *Q. robur* exhibited a double curve.
Weibull curves were therefore fitted for separately for each half of the curve in order to improve estimation of P_{50} (Cai et al., 2014).

Vessel lengths

The number of vessels open at both ends of a 0.275 m segment was measured by injection of silicone elastomer (Rhodorsil RTV 141, Rhodia, Cranbury, NJ, USA) with a fluorescent optical brightener (Ciba Uvitex OB; Ciba Specialty Chemicals, Tarrytown, NY, USA) was mixed with chloroform (1% w/w) and added to the silicone (Lens et al. 2011). Measurements were made on three stems of *Quercus robur* and *P. tremula* x *alba*. Stems were sealed in a pressure manifold with one cut end submerged in elastomer. Samples were infiltrated at a pressure of 0.10 MPa for 24 hours and then oven dried at 70 °C overnight. Vessels were counted at both ends of the stem with the difference between the proximal and distal end representing the proportion of vessels cut open at both ends of the sample.

Supplemental Data

Supplemental Figure S1. Transverse slices from microCT scans show embolised and functional xylem conduits for in well hydrated samples of (A) *Quercus robur*, (B) *Populus tremula* x *alba*, and (C) *Pinus pinaster*.

Supplemental Figure S2. Sequential images from microCT scans showing the effects of repeated scans and removal of leaves for water potential measurements.

Supplemental Figure S3. Vulnerability to drought induced embolism in *Quercus robur* saplings using two centrifuge techniques.

ACKNOWLEDGMENTS

We gratefully acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at the TOMCAT beamline. Sarah Irvine and Kevin Mader are thanked for assistance with measurements at the TOMCAT beamline. We also thank the SOLEIL synchrotron, France, for provision of beamtime at the PSYCHE beamline. Andrew King is thanked for assistance with measurements at the PSYCHE beamline. Andrew McElrone is thanked for supplying a specialized plant holder for measurements at the SLS. Craig Brodersen is thanked for advice on
image analysis and 3D rendering. We thank Gaëlle Capdeville for assistance with static centrifuge measurements made in 2015.
Table 1. Xylem pressure at 50% loss of hydraulic conductance (P₅₀) for three woody species as determined by two centrifuge techniques and X-ray computed microtomography (microCT). Within each row, different letters indicate significant differences ($P < 0.05$) across techniques. Mean ± standard error (n= 3-5 for Cavitron and static centrifuge measurements).

<table>
<thead>
<tr>
<th>Species</th>
<th>Cavitron</th>
<th>Static centrifuge</th>
<th>microCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus robur</td>
<td>1.38 (±0.10) a</td>
<td>0.47 (±0.09) b</td>
<td>4.16 (±0.16) c</td>
</tr>
<tr>
<td>Populus tremula x alba</td>
<td>1.83 (±0.05) a</td>
<td>1.81 (±0.02) a</td>
<td></td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>3.50 (±0.06) a</td>
<td></td>
<td>3.27 (±0.23) a</td>
</tr>
</tbody>
</table>
LITERATURE CITED

cavitation in grapevine: a comparison of four techniques applied to a long-
vesseled species. Plant Cell and Environment 33: 1502-1512
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ,
Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H,
Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A,
Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE
491: 752-755
pattern of air seeding thresholds in mature sugar maple trees. Plant Cell and
Environment 28: 1082-1089
species growing in tropical forests with contrasting precipitation. New
Phytologist 175: 686-698
Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme
vulnerability to cavitation in a ring-porous tree species. New Phytologist 193:
713-720
high negative pressures. Plant Cell and Environment 25: 815-819
measuring plant vulnerability to cavitation: a critical review. Journal of
Experimental Botany 64: 4779-4791
Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish
vulnerability curves - further support for the air-seeding hypothesis and
implications for pressure-volume analysis. Plant Physiology 100: 205-209
Evaluation of a new centrifuge technique for rapid generation of xylem
vulnerability curves. Physiologia Plantarum 124: 410-418
reference technology for high-resolution quantification of xylem embolism in
trees. Plant Cell and Environment 38: 201-206
Does sample length influence the shape of xylem embolism vulnerability
curves? A test with the Cavitron spinning technique. Plant Cell and
Environment 33: 1543-1552

Dalla-Salda G, Fernández ME, Sergent AS, Rozenberg P, Badel E, Martinez-
Meier A (2014) Dynamics of cavitation in a Douglas-fir tree-ring: transition-
wood, the lord of the ring? Journal of Plant Hydraulics. 1: e0005

Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC (2002)
Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae)
chaparral of California: A possible case of hydraulic failure. American Journal
of Botany 89: 820-828

Dixon HH, Joly J (1895) On the ascent of sap. Philosophical Transactions of the
Royal Society of London B 186: 563-576

Domec JC, Lachenbruch B, Meinzer FC (2006) Bordered pit structure and function
determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir
(Pseudotsuga menziesii; Pinaceae) trees. American Journal of Botany 93:
1588-1600

Ennajeh M, Simoes F, Khemira H, Cochard H (2011) How reliable is the double-
ended pressure sleeve technique for assessing xylem vulnerability to cavitation
in woody angiosperms? Physiologia Plantarum 142: 205-210

Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB

dieback are associated with high wood density in a temperate forest under
extreme drought. Global Change Biology 17: 2731-2742

of cavitation and embolism repair using magnetic resonance imaging. Plant
Physiology 126: 27-31

Jacobsen AL, Pratt RB (2012) No evidence for an open vessel effect in centrifuge-
based vulnerability curves of a long-vesselled liana (Vitis vinifera). New
Phytologist 194: 982-990

Kaufmann I, Schulze-Till T, Schneider HU, Zimmermann U, Jakob P, Wegner
LH (2009) Functional repair of embolized vessels in maize roots after
temporal drought stress, as demonstrated by magnetic resonance imaging.
New Phytologist 184: 245-256
Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus *Acer*. New phytologist 190: 709-723

McElrone AJ, Choat B, Parkinson DY, MacDowell AA, Brodersen CR (2013) Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature. Journal of visualized experiments 74

Rasband WS (2014) ImageJ. US National Institutes of Health, Bethesda, MD

Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artefact, and are 'r' shaped curves necessarily invalid? Plant Cell and Environment 35: 601-610

Tobin MF, Pratt RB, Jacobsen AL, De Guzman ME (2013) Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. Plant Biology 15: 496-504

Figure 1. Vulnerability to drought induced embolism in three woody plant species with contrasting xylem structure. Panels show vulnerability to embolism for (A) Quercus robur, (B) Populus tremula x alba and (C) Pinus pinaster. Percentage loss of conductivity (PLC) is plotted against stem water potential (Ψ) for each species. PLC was determined by microCT observations (black symbols), Caviron (white symbols) and static centrifuge (red symbols). Error bars for centrifuge data show standard error for each pressure (n=3-5).
Figure 2. Transverse slices from microCT scans show examples of xylem conduit functional status at the initial scan point for saplings of (A) *Quercus robur* and (B) *Pinus pinaster*. Embolised conduits appear as black space (black arrows) while water filled conduits appear grey. In *Q. robur*, vessels occur in dendritic bands, surrounded by water filled tracheids. Fibers surrounding the dendritic bands were air filled from the initial scan point. The pith (p) contained large air filled spaces in *P. pinaster* but not in *Q. robur*. A band of embolised latewood tracheids from the previous years growth was often present in the initial scans of *P. pinaster* (black arrows). Resin canals (r) were also visible in the stems of *P. pinaster*. The water potentials (Ψ) of these samples at the time of scanning were -1.9 MPa for *Q. robur* and -0.8 MPa for *P. pinaster*. Bars equal 500 μm for A and 200 μm for B.
Figure 3. Imaging from microCT scans demonstrating the presence of isolated, embolised tracheids (white arrows) in the stem xylem of *Pinus pinaster* for (A) transverse slice, (B) longitudinal slice and (C) three dimensional rendering showing transverse and longitudinal views together. Gas in bordered pit chambers connecting an embolised and a functional tracheid can be observed in longitudinal slices (black arrow heads). Isolated tracheids were not connected to other resolvable gas filled spaces in the xylem of intact plants. Scale bars are equal to 50 μm.
Figure 4. Visualization by microCT showing the progressive spread of embolism in the xylem of three woody plant species during dehydration, (A-D) *Quercus robur*, (E-H) *Populus tremula x alba*, (I-L) *Pinus pinaster*. Embolised conduits appear as black space in the cross section, while water filled conduits appear as light grey. Each column shows transverse slices through the main stem axis with increasing water stress down the column. The bagged leaf water potential of each sample at the time of scanning is given at the lower right. Scale bars represent 200 μm in each image.

McElrone AJ, Choat B, Parkinson DY, MacDowell AA, Brodersen CR (2013) Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature. Journal of visualized experiments 74

Rasband WS (2014) ImageJ. US National Institutes of Health, Bethesda, MD

Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artefact, and are 'r' shaped curves necessarily invalid? Plant Cell and Environment 35: 601-610

Tobin MF, Pratt RB, Jacobsen AL, De Guzman ME (2013) Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. Plant Biology 15: 496-504

Supplemental Figure S1. Transverse slices from microCT scans show embolised and functional xylem conduits in well hydrated samples of (A) *Quercus robur*, (B) *Populus tremula x alba*, and (C) *Pinus pinaster*. Embolised conduits appear as black space while water filled conduits appear grey. In these initial scans the majority of primary xylem conduits were embolised (white arrows). A small number of secondary xylem conduits were also embolised (black arrows). The pith contained large air filled spaces in *P. pinaster* but not in *Quercus robur* or *Populus tremula x alba*.
Supplemental Figure S2. Sequential images from microCT scans showing the effects of repeated scans and removal of leaf material for water potential measurements. Transverse slices are shown for two different positions on stems of *Quercus robur* (A-C) current year section of shoot, (D-F) two-year old section of shoot. The topmost image in each column (A, D) shows the initial scan prior to treatments. The middle row (B, E) shows stems after a repeat scan that was recorded at the same location. The bottom row (C, F) shows stems after a leaf was removed for water potential measurements. New embolism that resulted from leaf removal in current year growth (C) is indicated by white arrows. Repeat scanning and removal of a leaf did not result in new embolism in two-year sections of the stem. The bagged leaf water potential at the time scans were made was -0.5 MPa. Xylem from the previous years growth of 2-year old shoots (D-F) was embolised prior to the experiment and was ignored for these analyses. Scale bars are equal to 500 µm.
Supplemental Figure S3. Vulnerability to drought induced embolism in *Quercus robur* saplings using two centrifuge techniques. Sapwood specific hydraulic conductivity (K_s) is plotted against stem water potential (Ψ) for each species. Data were generated with Cavitron (white symbols) and static centrifuge (red symbols) techniques. Error bars show standard error for each pressure ($n = 3-5$).