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Abstract 
As sessile organisms, plants are especially vulnerable to a wide range of abiotic and biotic 

pressures. Moreover, anthropogenic climate change has been causing increased intensity 

and frequency of stress events. To predict how environmental stress modifies vegetation 

function, we need to better understand plant stress tolerance mechanisms. One such 

mechanism is carbon storage: storage of non-structural carbohydrates provides plants with 

reserves during a stress period and expedites post-stress recovery. However, storing carbon 

requires an a priori action that only has a positive effect on survival during future stress, and 

may be detrimental, in the short-term, by re-directing carbon from other crucial processes 

such as growth. In this thesis, I focus on exploring the growth-storage trade-off involved in 

plant carbon storage in the presence of stress. I employ a range of modelling techniques to 

mathematically characterise the response of the optimal storage utilisation trajectory 

(OSUT).  

In Chapter 2, I explore the shape of OSUT during a single stress period. It is 

commonly observed that, during a drought stress period, growth stops before 

photosynthesis, and storage increases. This pattern is used to infer that storage occurs 

passively, as an outcome of limitations to photosynthesis and growth. I examine whether 

this pattern could also be explained as an optimal process that maximises plant fitness and 

survival under stress (termed “active storage”). Using optimal control theory for a plant with 

limited soil water availability, I characterise the OSUT for two potential fitness outcomes: 

maximum biomass (MaxM) or maximum storage (MaxS) at the end of the stress period. In 

all cases, the OSUT consists of three discrete phases: “growth”, “storage without growth”, 

and a “stress” phase where there is no carbon uptake. The OSUT can be defined by the time 

point when the plant switches from growing to storing. This time point always occurs before 

the cessation of photosynthesis. These results imply that the common observation that 

growth always stops before photosynthesis can be interpreted as an optimal trade-off 

between carbon storage and growth, and that carbon storage may be an active process in a 

carbon-limited plant. 

In Chapter 3, I explore the long-term success of alternative storage strategies for a 

community of plants experiencing stochastic stress events. I use a gap model to simulate the 
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outcome of competition among tree species differing in two carbon storage-related traits: 

the switch time, which emerges from Chapter 2 (risky-safe spectrum), and the storage 

utilisation rate (fast-slow spectrum). All four possible combinations of the storage traits 

were used in 100-year simulations of environments differing in stress stochasticity (variance 

of stress duration) and intensity (average stress duration). In an environment with stress, 

only the slow-safe and slow-risky strategies survived; mortality caused primarily by 

depletion of carbon reserves prevented the other strategies from being successful. 

Increasing stress duration and stochasticity shifted community dominance towards the 

slow-safe strategies. These findings highlight the importance of carbon storage strategies in 

the survival of plants during stochastic annual stress and suggest that climate change will 

impact community composition, favouring trees with storage-prioritising strategies.  

Whilst Chapter 2 assumed that the evolved strategy is static, that is unrealistic. 

Hence in Chapter 4, I explore the acclimation of carbon storage to a stochastic environment. 

The framework applies model predictive control (MPC) that iteratively computes a short-

term OSUT, adopts the first step and updates its prediction to respond to changing 

environmental conditions. The MPC framework is applied to a simple plant model, coupled 

with an environmental model consisting of semi-random rainfall modelled as a Markov 

Process, and results are compared with the OCT model from Chapter 2. Overall, the MPC 

framework successfully imitated the optimisation framework, but, when maximising 

biomass, MPC maintained a significant storage buffer, increasing the potential survival of 

the plant. This chapter demonstrates that the MPC framework can be used to model 

biological acclimation of time-sensitive processes and is, therefore, a valuable new tool for 

modelling the effects of climate change in trees and other organisms. 

The results presented in this thesis identify candidate storage-related allocation 

traits that can link carbon storage strategies with other observable plant traits and 

processes. Such work would be vital in improving the representation of carbon storage in 

models. Therefore, the findings from this thesis provide new insights into how optimal 

carbon storage may be modelled and, further, underline the importance of capturing the 

trade-offs of growth-storage and the effects of stochasticity when exploring the process of 

carbon storage.
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1 General Introduction 
1.1 Overview 

1.1.1 Plant response to environmental stress 

Plants, especially trees as long-lived and sessile organisms, have evolved numerous 

mechanisms of resilience to stress (Craine et al., 2012). However, increased temperatures, 

land-use change and anthropogenic climate change are exacerbating the stress regimes 

experienced by plants (IPCC, 2021; Sheffield & Wood, 2008). Simultaneous stress events are 

increasingly common (Coumou & Rahmstorf, 2012), leading to increased negative effects on 

plants (Anderegg et al., 2015; Kayler et al., 2015). For example, higher temperatures can 

lead to heatwaves, which can amplify drought stress (Alexander, 2016), increase insect 

breeding (Anderegg et al., 2015) and increase the likelihood and intensity of fires (Adams, 

2013; Brando et al., 2019). On the other end of the temperature spectrum, delayed 

springtime frost events are more common (Zohner et al., 2020) and these events are more 

likely to co-occur with droughts (Charrier et al., 2021). Tree mortality due to extreme stress 

events has also been increasing (Adams et al., 2010), while those plants that survive may 

suffer prolonged damage from stress (Anderson et al., 2018; Birami et al., 2018; Ruehr et al., 

2019), leading to higher susceptibility to future stresses and herbivore attacks, and 

potentially to mortality (Blum & Tuberosa, 2018; Dietze, Matthes, et al., 2014; Trugman et 

al., 2018).  

In turn, these widespread effects can lead to trophic and demographic changes in 

local plant and animal populations (Mueller et al., 2005; Nadeau & Urban, 2019) with 

further impacts on the local and regional water, nutrient and CO2 cycling (Anderegg et al., 

2020; Batllori et al., 2020; Kannenberg et al., 2020). This potentially leads to a large positive 

feedback impacting on the global climate and CO2 levels (Bahn et al., 2014; Bonan, 2008; 

Chapin et al., 2008; Field et al., 2007; Reichstein et al., 2013), with increased likelihood of 

future stresses (Laurance & Williamson, 2001). In extreme cases, particularly in large 

vegetative regions such as the Amazon basin, boreal forests and the Arctic permafrost, the 

effects of increased stress can lead to positive climate feedback at a global scale (Bradshaw 

& Warkentin, 2015; Feldpausch et al., 2016; Field et al., 2007; McLaughlin & Webster, 2014; 
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Phillips et al., 2009). Stress-induced decreases in plants’ carbon (C) uptake, as caused by 

fires, droughts or heatwaves, can be large enough to turn a region from a C sink into a 

temporary source of C (Ma et al., 2012; Qie et al., 2017; Yang et al., 2018). 

Plants have evolved a wide range of both specialised and general mechanisms for 

stress resilience and resistance. The study of physiological and biochemical mechanisms for 

tolerance of stress has enhanced our understanding of stress impacts on plants over the last 

few decades; for example, Doerner (2020) has investigated the effects of extreme 

environments, Janni et al. (2020) have studied heat stress and Liao and Bassham (2020) 

have explored the role of hormones. Likewise, in order to improve the accuracy of climate-

change projections (Bastos et al., 2020), vegetation-modelling efforts have increasingly 

focused on improving the understanding of plant responses to stressors such as fires (e.g., 

WMFire, Bart et al., 2020), droughts (Drewniak & Gonzalez-Meler, 2017; Hartmann, Moura, 

et al., 2018; Sperry & Love, 2015) and heatwaves (Bastos, 2020; Cochard, 2019; Yiou & 

Viovy, 2020).  

In addition to discovering the biochemichal mechanisms responsible for plant stress 

responses, it is crucial to understand the plant system and its interaction with the 

environment at the macro scale (De Kauwe et al., 2017), which can be facilitated by looking 

at overall plant fitness. As shown by general economic theory, the timing of allocation of 

scarce resources in plants is crucial (Chapin et al., 1990; Iwasa, 2000; Lerdau, 1992). Plants 

that can optimise resource use for a particular context, such as drought or winter stress, are 

more likely to gain a competitive advantage for themselves and their offspring. However, 

there is a long-term cost to plant fitness associated with defending against stress (e.g., 

Albrecht & Argueso, 2016; Fine et al., 2006; J. Huang et al., 2019) and response to potential 

stress must always be balanced against short-term gains.  

1.1.2 Modelling of carbon storage 

Stored C facilitates the maintenance, recovery and resilience of plants during periods of 

stress (Chapin et al., 1990). The C assimilated in photosynthesis may be stored as non-

structural carbohydrates (NSC) throughout the plant (Kozlowski, 1992) and may remain in 

storage for periods of a few hours up to several years prior to utilisation (Carbone et al., 

2013; Richardson et al., 2013). The size of stored pools of C in plants changes seasonally 
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(Barbaroux & Breda, 2002; Brum et al., 2021) and varies both between species (Myers & 

Kitajima, 2007; Würth et al., 2005) and within species from different environments (Bansal 

& Germino, 2010; Blumstein & Hopkins, 2021; Cao et al., 2018). Moreover, since C storage is 

a highly dynamic process that is sensitive to phenological as well as environmental stimuli, 

the timing of processes associated with NSC accumulation and utilisation may be of 

particular importance (Hartmann & Trumbore, 2016).  

Plant coordination of the storage and mobilisation of C is complex and not currently 

well understood. Landmark review papers published over the last two decades have 

repeatedly called for increased attention to and improvement of C-storage modelling 

(Dietze, Sala, et al., 2014; Franklin et al., 2012; Le Roux et al., 2001; Litton et al., 2007; 

Merganičová et al., 2019). While the versatile nature of stored C is what makes it useful for 

plant growth and stress response, this is also what makes it a difficult and complex subject 

to model. Although the number of modelling efforts has been on the rise – with many 

dynamic global vegetation models (DGVM) increasingly including C storage processes 

(Merganičová et al., 2019) – there is still no consensus on how C storage should be 

modelled. One problem is a lack of appropriate data for model development (Dietze, Sala, et 

al., 2014; Fatichi et al., 2014; Quentin et al., 2015). In addition, modelling the asynchronous 

nature of storage accumulation and use is especially challenging (Hartmann & Trumbore, 

2016; Piper, 2020). Including stored C in models disconnects the source of C in plants 

(photosynthesis) from the ultimate sinks for C (growth, respiration, reproduction, defence, 

etc.) by considering the use of C independently from its uptake (Gough et al., 2009). While 

this separation is important for improving the accuracy of modelling, it also increases the 

degrees of freedom in a model and ultimately the difficulty of modelling vegetation 

dynamics.  

One way of improving our understanding of how to model carbon storage dynamics 

is to examine how integrated, whole-plant C storage may be optimised over time in 

response to stress. Optimisation modelling is a mathematical technique which seeks to 

describe how the outcomes of certain macro-scale mechanisms (e.g., evolutionary 

processes) have led to micro-scale mechanisms (e.g., the allocation of C) to meet an 

optimality criterion such as maximising the Darwinian fitness of the individual (Smith & 
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Maynard, 1978). The concept of Darwinian fitness is difficult to define, measure and model 

for long-lived organisms such as trees, so a proxy (or ‘optimisation goal’) is used instead 

(Franklin et al., 2012). Outcomes of optimisation modelling can complement the design of 

experiments and models by identifying a mathematically rational underlying evolutionary 

reasoning behind the observed or modelled behaviours. Crucially, such optimisation studies 

can extend our ability to extrapolate process dynamics beyond the limitations of available 

data.  

With respect to C storage dynamics, high concentrations of NSC storage within 

plants have been theorised to have evolved as a way of enhancing plant fitness in seasonally 

and stochastically stressful environments by maximising the likelihood of plant survival 

(Wiley & Helliker, 2012). Dynamic optimisation methodologies (e.g. optimal control theory, 

OCT) from the calculus of variations (Lenhart & Workman, 2007) provide a mathematical 

approach to examining temporal dynamics such as C storage.  

In the literature review below, I outline current research on the role of NSC in plant 

responses to stress and on the variation in observed patterns (Section 1.2.1), whole-plant 

carbon storage coordination (Section 1.2.2), the carbon source and sink dynamics (Section 

1.2.3) and highlight progress in the modelling of C storage (Section 1.2.4). I then describe 

studies showing how optimisation modelling of C resources can enhance the modelling of C 

storage (Section 1.2.5). Finally, I describe modelling approaches to complement 

optimisation modelling of C storage: gap models (Section 1.2.6) and model predictive 

control (Section 1.2.7). I conclude the chapter with an overview of the thesis structure and 

the research questions that are addressed in this study and outline the approaches I have 

used to address these in the subsequent chapters (Section 1.3). 

1.2 Literature review 

1.2.1 Role of non-structural carbohydrates in plant stress response 

Two seminal papers (Chapin et al., 1990; McDowell et al., 2008) have triggered an increase 

in the number of studies on NSC over the last 3 decades (Figure 1-1). The first of these 

papers presented a theoretical model of the temporal dynamics and trade-offs associated 

with plant resource storage (Chapin et al., 1990), while the second paper explored plant 

dynamics during drought, including the role of C storage in resilience to drought (McDowell 
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et al., 2008). Consequently, the period 1990–2008 saw an increase in the number of studies 

addressing the role of C storage in relation to other trade-offs such as fast-slow growth 

(Kobe, 1997) and shade tolerance (Kitajima, 1994; Myers & Kitajima, 2007). Since 2008, 

however, the focus in the field has been primarily on the role C storage plays during periodic 

stress such as drought. Below I outline the dynamics of NSC within the plant, followed by a 

description of their role during and after stress, before addressing some of the questions 

that still remain about NSC dynamics.  

 

Figure 1-1 Yearly publication numbers of studies on non-structural carbohydrates (NSC) to 8 September 2021. Publication data obtained 

from Web Of Science using the search query: ‘((ALL=(non-structural carbohydrate) OR ALL=(carbohydrate) OR ALL=(NSC)) AND 

(ALL=(plant) OR ALL=(tree)))’ and by restricting the results to the top 20 plant-science-related WoS categories. Total number of 

publications: 31,048. Two marked increases in publication numbers can be observed after the publications of Chapin et al. (1990) and 

McDowell et al. (2008). Analysed using the bibliometrix R-package (Aria & Cuccurullo, 2017).  

Plants store C in the form of NSC, in contrast to structural C within the plant. The use 

of carbohydrates produced by photosynthesis is twofold: a small portion is used for building 

tissues within the leaf, while the majority is transported to other organs in the form of 

highly mobile sugars (Kozlowski, 1992). Once the sugars reach their targets, they are 

synthesised into long-chained structural carbohydrates such as cellulose to build tissue 
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outside of the leaf, kept in the form of soluble sugars (SS) or converted into starch. NSC 

represents the sum of SS and starch. Sugars are the substrates for primary and secondary 

metabolism, and are thus often stored for use in short-term respiration (Martínez-Vilalta et 

al., 2016). Starch, a much larger compound, is generally more suitable for long-term storage 

due to its osmotically inactive nature (Hoch, 2015). NSC, especially starch, are widely 

accepted as the main proxy for measuring C storage in trees (Dietze, Sala, et al., 2014). 

Other compounds, such as hemicellulose and lipids, can also function as C storage 

depending on their mobility (Hoch, 2007). Nevertheless, most studies focus only on the 

contribution of starch – or more often NSC – to storage, as the contributions of other 

compounds are generally negligible for most species (Chapin et al., 1990; Hoch et al., 2002).  

C storage supplies plants with their energy and construction needs during periods of 

reduced or suspended photosynthetic activity due to stress. While photosynthesis can 

generally acclimatise to a wide range of abiotic conditions, it becomes strongly inhibited 

when the plant experiences conditions outside its tolerance limits. Plant photosynthesis is 

greatly reduced in most plants in temperatures below 5 °C (Linder & Troeng, 1980). 

Similarly, heatwaves can inhibit photosynthesis (O’Sullivan et al., 2017). Water stress also 

inhibits photosynthesis by disrupting the water supply to leaves, causing the plant to close 

stomata (McDowell et al., 2008). Plants vary in their tolerance to drought (Choat et al., 

2012; Zhu et al., 2013) and in the extent to which they regulate their stomata throughout 

drought in response to hydrological and chemical activity within the plant (an/isohydricity; 

Tardieu and Simonneau, 1998). Stress can also cause physical damage to plants such as leaf 

burning during heatwaves (Ruehr et al., 2019). In addition, plants may abscise their leaves 

when under stress (Munné-Bosch & Alegre, 2004; Wilkinson & Davies, 2002) as a means of 

avoiding potential energy costs and damage. Recovery from physical damage is initially 

supported by the mobilisation of NSC (Ruehr et al., 2019) and increased NSC levels are 

potentially associated with faster post-stress recovery (Tomasella et al., 2017, 2019).  

In addition to their energy and construction functions, NSC, chiefly SS, play an 

important role in enhancing the resistance of plants to stress. Under both drought stress 

and cold stress, air bubbles called embolisms can form in the transpiration stream. 

Embolisms disrupt the flow of water, affecting the plant’s ability to capture and transport 
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resources, and can eventually lead to hydraulic failure and mortality (McDowell et al., 2008; 

Sperry & Sullivan, 1992). Plants accumulate SS to adjust their osmotic properties with the 

aim of increasing resistance to stress. For example, under water stress, osmotic potential 

along the water column and within organs is increased in order to improve resistance to 

embolism (Tomasella et al., 2020). Higher levels of sugar in plant cells decrease their 

freezing point and make the plant more resistant to damage from cold temperatures 

(Ruelland et al., 2009). Solute-induced osmotic adjustment also aids in the salt resistance of 

salt-acclimatised plants (Chaves et al., 2009). Although less studied, differences in the 

composition of NSC between flood-tolerant and flood-intolerant species suggest that NSC 

may also play a role in mitigating extreme water stress, if only to support energy needs 

(Camisón et al., 2020; Delgado et al., 2018). This use of sugars during stress is mediated by 

the regular transformation between starch and sugar. Most commonly, plants will increase 

their sugars before winter so as to better tolerate cold and then convert them to starch in 

spring (Graham & Patterson, 1982). Furthermore, when stressed to the point of mortality, 

plants may retain high SS concentrations in order to maintain metabolic function, although 

this can significantly deplete their starch pools (e.g., Dickman et al., 2015; Marler & 

Cascasan, 2018; Wiley et al., 2017).  

1.2.2 Investigating whole-plant carbon storage coordination 

Thus, there have been significant advances recently in understanding the biochemical and 

physiological roles of C storage during plant stress. However, it is more difficult to 

investigate the temporal dynamics that control whole-plant C storage in anticipation of, 

during and after periods of stress. Designing experiments that can reveal C storage dynamics 

is not straightforward, in part due to the destructive nature of sampling and the complexity 

of integrating whole-tree dynamics (Hartmann et al., 2020; Ryan, 2011). This is further 

complicated by methodological issues when measuring stored C that can lead to divergent 

results across labs (Piper & Reyes, 2020; Quentin et al., 2015). Moreover, it is not fully 

understood how readily stored C is accessible in different plant growth forms or across 

different organs (Sala et al., 2012). Trees generally tend to use more recently stored C for 

new root growth (Gaudinski et al., 2009) and bud burst (Ichie et al., 2013) but less recently 

stored C for recovery from stresses and disturbances (Dietze, Sala, et al., 2014). Clipping 
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studies suggest that some stored C is sequestered or unavailable to plants (Chapin et al., 

1990) but radioisotope measurements revealed that 11-year-old C was used by trees in the 

Amazon to produce new tissues following severe drought (Vargas et al., 2009). Older C is 

less likely to be available to plants, due to its location, and can be mobilised only when 

newer stores become unavailable or depleted, or under extreme abiotic conditions (Galiano 

et al., 2011). A plant generally utilises the C from the storage location closest to where it is 

needed, but dieback may occur before the plant is able to mobilise C from more distant 

locations (Munné-Bosch & Alegre, 2004; Wiley et al., 2017). 

A recent synthesis (Martínez-Vilalta et al., 2016) found that plants maintain a 

minimum level of NSC throughout the year, with no clear differences between organs, plant 

functional types or biomes. While there is no simple way to measure the minimum amount 

of NSC, which may be dependent on plant phenology, abiotic conditions and other factors, 

consistent minimum NSC concentrations support the hypothesis that maintaining C storage 

is crucial for plant survival and fitness (Wiley & Helliker, 2012).  

Data from experimental manipulations and observations of plants under natural 

stress conditions shows that the responses of plants to abiotic stress and the temporal 

variations in these responses differ. The responses may be influenced by a number of 

factors, as explored below. Firstly, the intensity of the stress may influence the response. 

Drought-stressed plants have been observed to decrease their levels of starch (Mitchell et 

al., 2013) and total NSC (O’Brien et al., 2015) under conditions of gradual drought and 

infrequent watering, respectively, as well as during natural drought (Rosas et al., 2013). In 

contrast, increased total NSC was observed during an extreme drought (O’Brien et al., 

2015). Changes in NSC with drought also vary significantly between species: in an 

experiment involving 5 species, Quercus rubra and Acer rubrum seedlings subjected to 

drought showed no change in their NSC concentrations over time, while the remaining 3 

species showed decreases (Maguire & Kobe, 2015). Moreover, the dynamics of C storage 

can also change during a period of stress: Robinia pseudoacacia seedlings increased their 

NSC in the first 10 days of extreme drought stress, but showed significant decrease soon 

after with NSC levels returning to pre-drought conditions after 20 days and continuing to 

decrease thereafter (Yang et al., 2019). A similar pattern was also observed in SS in 
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Eucalyptus globulus subjected to an extreme drought (Mitchell, O’Grady, Tissue, et al., 

2014). The stress response may also vary between experimental and natural conditions, 

although this comparison has not been systemically analysed. However, in natural 

environments stressed trees generally have a reduced NSC level compared to non-stressed 

individuals (Piper & Paula, 2020). NSC dynamics also differ between seedlings and mature 

plants (Hartmann, Adams, et al., 2018 and the studies within). Quercus virginiana and 

Quercus hemisphaerica seedlings had much greater fluctuations in diurnal NSC 

concentration than their mature counterparts (Baber et al., 2014). Another study comparing 

the drought responses of seedlings and mature trees in 4 subtropical species showed that 

seedlings generally decreased their NSC pools, while mature individuals kept their NSC 

levels static (Zhang et al., 2020). Finally, stress responses may vary due to an individual’s 

local adaptation. Gradients of stress suggest that plants are locally adapted to stress (Bansal 

et al., 2011; Cao et al., 2018; Dolezal et al., 2021), implying potentially significant intra-

specific variations in species responses to stress. Furthermore, NSC dynamics may also 

change following multiple stress events (Atkinson et al., 2014; Galiano et al., 2017), 

suggesting that plants adjust their storage strategies to new conditions. 

1.2.3 Carbon source and sink relationships 

Explaining and consolidating these divergent responses in relation to plant NSC dynamics 

requires the use of conceptual models. Consideration of C source and sink relationships can 

help to explain the observed patterns. Briefly, the C source refers to the rate of 

photosynthetic uptake, while the C sink is the demand for C by plant processes such as 

biomass growth and respiration. Two primary dynamics of storage can be defined which 

refer to the relationship between C sources and sinks (Chapin et al., 1990). When the C 

source is larger than the C sink, the plant passively accumulates the excess Carbon in a 

process termed ‘passive storage’. On the other hand, when C is allocated to storage despite 

demand by the sink, competition for C is observed in a process termed ‘active storage’.  

To determine the triggers of NSC dynamics, researchers often manipulate either the 

sink or source strengths of the plant, for example, by manipulating access to light and CO2 

(source manipulation) or by subjecting the plant to abiotic stress such as high and low 

temperature and drought (sink manipulation). Source limitation can be achieved by 
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increased shading (e.g., Bahn et al., 2013), decreased CO2 (e.g., Duan et al., 2018) or 

defoliating of plants (e.g., Deslauriers et al., 2015) to decrease the amount of C entering the 

plant. Alternatively, increased CO2 may be provided to increase the C source (e.g., Bachofen 

et al., 2018; Clarke et al., 2016), particularly in studies which combine this treatment with 

sink limitation. Sink limitation can be achieved by lowering the temperature (although 

primarily explored through field studies, e.g., Li et al., 2018) or decreasing water availability 

(e.g., da Costa et al., 2010). Alternatively, sink strength can be decreased by limiting rooting 

volume through pot-size restriction (Mahmud et al., 2018).  

However, storage of C, as a transitory compound, can be both a sink and a source at 

different timescales (Hartmann & Trumbore, 2016), which may contribute to further 

difficulty in interpreting results. When treated entirely as a sink, C storage is generally 

considered to be of lowest priority in a plant (Minchin, 2007). Stressed plants often stop 

growing before they stop photosynthesising, so the accumulation of NSC under stressful 

conditions is considered a fully passive process (Fatichi et al., 2014; Körner, 2003, 2015). 

However, studies that have manipulated C sink and source strength observed both passive 

(Bachofen et al., 2018) and active C storage (Li et al., 2018). Resolving questions about 

storage dynamics requires models which can fully explore C storage and consolidate its 

changing behaviours over time.  

1.2.4 Progress in modelling NSC 

Models are crucial in the endeavour to reconcile the available data on NSC response to 

stress. Studies which compare model schemes with and without storage pools have 

invariably shown that a storage pool significantly improves model accuracy (Mahmud et al., 

2018; Richardson et al., 2013). As such, C storage is increasingly included in C allocation 

schemes (Merganičová et al., 2019). However, only just over half of DVGMs include a 

storage pool (Merganičová et al., 2019), although labile C was used in theoretical models as 

early as the 1970s in a C allocation model (Thornley, 1972) and in whole-plant and 

ecosystem models in the late 1980s (Running & Coughlan, 1988) and the 1990s (Friend et 

al., 1997; Grossman & DeJong, 1994; e.g., Weinstein et al., 1991; Wermelinger et al., 1991).  

Due to the lack of consensus on how to model C storage allocation (Dietze, Sala, et 

al., 2014), there are many approaches to modelling this process. While models 
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predominantly adopt a single C storage pool (e.g., Fisher et al., 2010), some make a 

distinction between labile C used for immediate purposes and storage C used for long-term 

buffering (e.g., Richardson et al., 2013). Another approach is to implement local C storage 

pools for different plant components (e.g., Allen et al., 2005). Stored C is used exclusively for 

respiration and growth (Dietze, Sala, et al., 2014) and is occasionally a mortality trigger, for 

example, relating mortality to low carbohydrate rates in the TRIPLEX model (Liu et al., 

2021). The role of storage in osmotic processes is generally ignored even in C allocation 

models with a greater hydraulic focus (e.g., the TREES model, Mackay et al., 2015). Finally, 

some models of plant hydraulics use sugar concentration to capture phloem dynamics (De 

Schepper & Steppe, 2011), but these detailed process representations are generally not 

adopted in whole-tree models (Hartmann et al., 2020).  

Models also vary in the mechanisms posited to govern the allocation and use of C 

storage. In some models, the accumulation of C storage occurs as a consequence of passive 

storage and is thought of as a simple overflow buffer (McDowell et al., 2013). Alternative 

schemes use an active storage allocation model in which storage competes with growth 

(Richardson et al., 2013). Active storage may be represented as a fraction of the total plant 

biomass (Fisher et al., 2010) or may be more dynamic, with variable storage-allocation rates 

(Mahmud et al., 2018). Increasingly, storage dynamics are also being integrated with sink 

controls. Sink strength is usually defined by the order in which sinks are prioritised, leaves 

being the top priority and storage the lowest (Guillemot et al., 2017). Environmental 

controls are placed on the sink strength to increase the realism of the storage model (Jones 

et al., 2020).  

1.2.5 Optimisation modelling 

While modelling of C storage is important for improving the accuracy of modelling 

vegetation, including C storage processes increases the degrees of freedom in the model by 

increasing the number of model parameters and variables. If there are no clear guidelines as 

to the whole-tree processes that control C storage such an increase in model complexity 

may not necessarily increase the accuracy of representing whole-tree C cycling. 

Optimisation modelling can help address this gap. In biology, optimisation modelling helps 

explain how a natural process does occur out of the many ways it can occur (Rosen, 2000, p. 
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201) by providing a powerful constraint on the relationship between available resources and 

their effects on the plant (Raupach, 2005). To do this, optimisation modelling assumes the 

overarching goal of maximising plant fitness with respect to the observed variables as 

constrained by physical limitations. Plant fitness is usually represented by a proxy, or 

objective function, which is more comprehensible and at times measurable (Franklin et al., 

2012). With the appropriate constraints and objective function, optimisation models have 

been shown to explain a variety of plant behaviours such as the trade-off between 

photosynthesis and water use (Cowan & Farquhar, 1977), allocation dynamics between 

roots and shoots (Reynolds & Thornley, 1982) and leaf nitrogen (N) allocation (Field, 1983). 

Optimisation modelling creates a feedback loop between the objective function and the 

targeted variables, creating powerful coupling between otherwise unlinked processes. 

In modelling of C storage, dynamic optimisation creates a relationship between 

current plant behaviour and projected plant fitness. In other words, dynamic optimisation 

using OCT (Lenhart & Workman, 2007) provides a method for finding an optimal behaviour 

trajectory over time with respect to a future goal. Thus, the temporal asynchronicity 

between storage accumulation and use can be resolved by linking C allocation over an 

observed period with a future fitness proxy such as plant size or photosynthetic gain at the 

end of the period. Dynamic optimisation models which include storage have most often 

been used to explain reproductive behaviours: finding the optimal time for switching to 

reproductive behaviour in an annual plant (Chiariello & Roughgarden, 1984) and exploring 

perennial dormancy and eventual reproduction at maturity using a storage pool to survive 

through winter (Iwasa & Cohen, 1989). Examining such dynamics further to look at optimal 

responses to drought stress, a task I undertake in Chapter 2, would greatly aid in helping 

determine storage dynamics.  

1.2.6 Modelling long-term community dynamics 

In addition to stress, carbon storage dynamics are further affected by community dynamics 

and long-term processes. Competition for resources can impose additional stress on already 

stressed plants and lead to more complex NSC dynamics (Deng et al., 2019) and potentially 

earlier mortality (Piper & Fajardo, 2016). Moreover, NSC can mitigate the long-term effects 

of stress, by improving recovery following stress (Ruehr et al., 2019). As such, while a carbon 
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storage strategy may be optimal in a short-term drought scenario, the combined effects of 

competition and long-term effects of stress may reduce the efficacy of the strategy with 

respect to the fitness over a lifetime of an individual.   

Gap models, which simulate interspecific population dynamics within a patch of 

forest subject to a stochastic environment (Bugmann, 2001), can be used to help 

understand the community dynamics in specific environmental conditions (Bugmann, 1996). 

In gap models, individual trees are modelled explicitly based on species-specific traits. 

Therefore, competition for resources, such as light or nutrients, can limit growth and 

survival of smaller individuals. Plant behaviour and relevant feedback mechanisms can, 

therefore, be explored and community dynamics and individual fitness become emergent 

properties of the simulations. Gap models have been used to study mixed-age and mixed-

species dynamics, reproducing climate-dependent species coexistence and dynamics in 

several New Hampshire forest plots (Botkin et al., 1972), effects of fire and high altitude on 

Australian Eucalyptus-dominated forest ecosystems (Shugart & Noble, 1981) and more 

recently allowing for short-term forecasts of community dynamics in a range of forest 

ecosystems in France (Morin et al., 2021).  

In addition to reproducing community dynamics of real species and ecosystems, gap 

models can be used to examine long-term trait- and size- dynamics on emergent community 

properties (Falster et al., 2016). For example, Falster et al. (2011) examined the effect of 

varying four plant traits (leaf economic strategy, height at maturation, wood density, and 

seed size) on commonly observed vegetation properties (average height of leaf area, leaf-

area index, net primary productivity and biomass density). In addition to individual-level 

plant traits the study also looked at landscape properties such as disturbance probability to 

examine the effect of the environment on emergent properties. Through this study, Falster 

et al. (2011) were able to determine the contribution of specific traits on the plant 

community and determine their importance.  

Similarly, gap models can be used to bridge the gap between the knowledge on 

short-term storage dynamics and long-term success. By specifying alternative traits related 

to a carbon storage strategy, individual strategies can be formulated and simulated over the 

long-term using gap models. Moreover, in addition to modelling alternative individual 
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strategies, landscape conditions can be examined to determine the effect of stress intensity 

on the community. This is undertaken in Chapter 3 to determine the effect of individual 

strategies on long-term community dynamics in stochastic environments.  

1.2.7 Modelling optimal carbon storage under changing conditions  

As stress cannot be fully predicted, the optimal response of carbon storage to stress will also 

be affected by stochasticity. Accounting for variable stress risk is likely to have a notable 

effect on predicted carbon allocation strategies. For example, models using stochastic 

dynamic programming (SDP) – an extension of OCT that allows for stochasticity – showed 

that relationships between stochastic and destructive local events, such as fire, affected the 

optimal storage-to-foliage ratio (Iwasa & Kubo, 1997), which, in turn, determined the 

capacity of the plant to recover. However, the statistical tools embedded in SDP focus on 

the average individual tree response to average environmental conditions. Therefore, SDP 

makes assumptions about equilibrium dynamics which may not be valid under climate 

change.  

To model the acclimation of tree carbon storage strategy to changing conditions a 

new framework may be required. Instead of approaching optimal response as dependent 

“average” conditions, the optimal trajectory may be found by repeatedly computing and 

updating the optimal trajectory to account for stochastic changes in the environment. This 

can be achieved by using a method called model predictive control (MPC) which has been 

successfully applied to engineering (García et al., 1989), economic (Nordhaus, 1993) and 

policy systems (An et al., 2021) but never before to plant dynamics. MPC can simultaneously 

simulate plant acclimation to changing conditions and approximate optimal dynamics, 

allowing us to examine how an optimal carbon storage allocation model may change when 

stochastic conditions are introduced. The development of a new framework using MPC is 

undertaken in Chapter 4 of this thesis. 

1.3 Aims of the study and structure of the thesis 

Finding the optimal allocation trajectory with respect to given environmental conditions and 

stressors is an important step in determining the asynchronous drivers of C allocation. In 

this study, I undertake a multifaceted approach to modelling C allocation to storage under 

stress through the use of different but complementary modelling approaches. I use OCT to 
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find the optimal storage dynamics for plants subjected to stress (Chapter 2). The OCT results 

are then used to explore the stochastic effects of stress on individuals in competitive 

environments (Chapter 3) and how the optimal dynamics may change and adapt to a 

changing environment (Chapter 4).  

I first apply OCT in order to calculate the optimal storage utilisation trajectory (OSUT) 

in the simple situation of a single drought to predict optimal C storage strategies for plants 

facing drought (Chapter 2). Moreover, in order to capture variable life history strategies, I 

look at alternative formulations of the optimisation function to look at plants that maximise 

their storage pool and plants that maximise their biomass pool, as well as strategies which 

maximise a particular ratio of biomass to storage size. Finally, to better understand the 

impact of stress intensity on the plant I vary the water availability to subject the plant to 

more intense drought conditions to explore how stress intensity controls the allocation 

trajectory. The insights obtained from this analysis forms the basis for the remaining parts of 

this work. 

One major challenge in applying OCT is in identifying the appropriate objective 

function to represent plant fitness. I have explored alternative objective functions, but 

needed a framework within which to understand the outcome of competition that 

determines fitness. Therefore, in Chapter 3 I use a gap model to model outcomes of 

competition across species and explore the success of different strategies under different 

stress regimes. I use OCT predictions to inform an individual-based model of C storage 

allocation and simulate a stochastic environment in which plants can compete. Since 

competition imposes an additional stress on individuals by constraining access to resources, 

individual interaction may be an important factor to consider.  

A second major challenge in applying OCT is that it finds a single optimal trajectory 

which cannot adapt to changing conditions. Therefore, OCT results should be interpreted as 

the outcome of an evolutionary process adapted to specific conditions, rather than as a 

continuous system of adaptation. Thus, in Chapter 4 I apply a new method to the field, 

model predictive control (MPC), which models an updating OCT solution which can adapt to 

stochastic conditions through simulations, in order to explore MPC’s potential for adaptive 

modelling.  
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In summary, these approaches to modelling are used in this thesis study to 

investigate the following 3 research questions:  

1. What is the optimal storage strategy for plants faced with drought? 

2. How does the optimal storage strategy perform in a stochastic and competitive 

environment? 

3. How might a plant adapt its optimal storage strategy under uncertain future conditions?
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2 Dynamic Optimisation of Storage in Stressed Plants 

Abstract 

Allocation of non-structural carbohydrates (NSC) to storage allows plants to maintain a 

labile carbon pool in anticipation of future stresses. However, to do so, plants must forego 

use of the carbon for growth, creating a trade-off between storage and growth. There is 

debate as to whether carbon storage is an active process, meaning plants have evolved 

strategies to optimise this trade-off, or a passive process in which carbon storage occurs 

only once other needs are satisfied. To help distinguish whether carbon storage is an active 

process, one can predict an optimal storage utilisation trajectory (OSUT) and compare the 

predictions with appropriate experimental data.  

Here, I use optimal control theory to calculate the OSUT over a single drought stress 

period. I examine two fitness objectives representing alternative life strategies: 

prioritisation of growth (MaxM) and prioritisation of storage (MaxS), as well as strategies in 

between these extremes. I show how soil water availability at the start of the stress period 

affects the OSUT.  I find OSUT consists of three discrete phases: “growth”, “storage without 

growth”, and the “stress” phase where there is no carbon source. The OSUT can be defined 

by the time point when the plant switches from growing to storing. Growth-prioritising 

plants switch later and fully deplete their stored carbon over the stress period while 

storage-prioritising plants either do not grow or switch early in the drought period. The 

switch time almost always occurs before soil water is depleted, meaning that growth stops 

before photosynthesis. Experiments that observe drought-exposed plants cease growth 

prior to photosynthesis are often taken as evidence for passive storage and a lack of carbon 

source limitation. However, the results derived here imply that carbon storage during 

drought can be interpreted as an active process that optimises plant performance during 

stress.  

2.1 Introduction 

Carbon storage is a crucial mechanism of plant stress tolerance. When a plant is subjected 

to abiotic stress, such as drought or cold stress, photosynthetic carbon uptake is limited 
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(Ferner et al., 2012; McDowell et al., 2008), and the energy required for survival and post-

stress recovery must be supplied by non-structural carbohydrates (NSC) stored before the 

onset of stress (Hartmann & Trumbore, 2016). However, the opportunity cost of storage can 

be substantial. If carbon is stored rather than allocated to increasing structural or 

productive biomass, the plant misses the opportunity to increase light capture and 

photosynthetic capacity (Lerdau, 1992). While carbon that is stored may often be used for 

growth later, the compounding benefits of early investment in growth are not realised 

(Bloom et al., 1985).  

Growth comes with additional costs: bigger plants have larger metabolic 

maintenance costs (Mori et al., 2010), while faster growth is often associated with less 

resistant tissues, such as lower wood density (Eller et al., 2018) or leaf mass per area 

(Blumenthal et al., 2020; Wright et al., 2004), which are more vulnerable during stress 

(Onoda et al., 2017). Faster growth means less carbon is kept in storage (Atkinson et al., 

2014), which increases plant susceptibility during stress periods, including an increased risk 

of significant tissue damage (Kreuzwieser & Rennenberg, 2014; Ruehr et al., 2019) and 

potential mortality (Adams et al., 2017; Allen et al., 2010; Bojórquez et al., 2019; McDowell 

et al., 2008). To predict the effects of climate change on forest dynamics, it is important to 

reliably model carbon storage during stress (Ceballos-Núñez et al., 2018; Merganičová et al., 

2019; Richardson et al., 2013).  

Several approaches to modelling carbon storage have been developed over time. 

Some models represent the environmental effects of stress on photosynthesis and growth, 

with storage acting as a passive buffer between these two processes (Fatichi et al., 2012; 

Leuzinger et al., 2013; Weinstein et al., 1991). Another approach is to assume plants 

maintain a fixed concentration of stored carbon in live biomass during non-stress periods, 

with storage accessed during stress periods (De Schepper & Steppe, 2010; R. Fisher et al., 

2010; Jones et al., 2020; Medvigy et al., 2009). In more complex models, the utilisation of 

stored carbon can be primarily sink (growth) dependent rather than source (photosynthesis) 

dependent (Jones et al., 2020). This approach is equivalent to the assumption of “passive” 

storage (Chapin et al., 1990), in which the rate of storage emerges as the outcome of 

environmentally-controlled photosynthesis and growth processes. For example, following 
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the onset of stress, storage may accumulate because photosynthesis has higher tolerance to 

abiotic stress than growth; if photosynthesis continues after growth is inhibited, non-

structural carbohydrates accumulate in the plant (Ayub et al., 2011).  

However, the idea behind passive storage dynamics minimises the role of the trade-

off between growth and storage. Models rely on purely environmental triggers for growth 

and storage dynamics. In reality, there is increasing evidence for complexity in storage 

dynamics (D’Andrea et al., 2021; Mund et al., 2020) and the existence of a growth-storage 

trade-off. An alternative theory, called “active” storage, is that plants actively manage the 

timing of growth to ensure adequate storage during stress periods  (Bond & Midgley, 2000; 

Sala et al., 2012; Wiley & Helliker, 2012). Because the processes of carbon uptake and 

subsequent storage utilisation are asynchronous (Hartmann & Trumbore, 2016), an 

understanding of how plants economise the use of carbon over time is crucial for examining 

this trade-off. Therefore, an alternative approach to predicting storage during stress may be 

to assume plants are actively managing storage to optimise the growth-storage trade-off.   

One way of doing this is to use dynamic optimisation modelling to predict carbon 

allocation to storage under stress. Rather than assuming a priori values for parameters that 

determine model behaviour, optimisation modelling finds the values of the parameters that 

maximise a pre-defined goal function over some observed period. Assumptions are, 

therefore, moved from an empirical framework to an evolutionary one. One example of the 

successful application of optimisation theory has been to predict plant stomatal 

conductance from the hypothesis that stomata are regulated to maximise daily 

photosynthetic gain for a given amount of water loss (Cowan & Farquhar, 1977). Cowan and 

Farquhar’s analysis led to an explanation of diurnal stomatal behaviour, including the 

observation that photosynthetic activity dips around midday. This behaviour could not 

previously be explained by responses to abiotic conditions: photosynthetic assimilation is 

highest during midday when temperatures and transpiration are highest. It follows, 

therefore, that midday photosynthesis would be preferred if the process were evaluated 

instantaneously, independent of diurnal dynamics. Instead, when water costs are evaluated 

against photosynthetic gain over a diurnal scale, dynamic optimisation models predict peak 

activity in the morning and evenings, thereby explaining the observed patterns of stomatal 
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behaviour (Buckley, 2005; Damour et al., 2010; Medlyn, Duursma, Eamus, et al., 2011). 

Theoretical advances such as these have led to the development of more accurate 

photosynthetic models, as well as assisting in experimental design to explore the effects of 

stress on plant function (e.g., Manzoni et al., 2011; Wolf et al., 2016).  

In the same way that optimisation modelling has helped explain physiological 

processes, it can be used to provide insight into carbon allocation, storage, and utilisation. 

One simple theory of optimal resource allocation suggests that plants should allocate 

carbon towards growing the organ responsible for the most limiting resource, e.g. allocation 

towards roots when nutrient uptake is limiting (Bloom et al., 1985; Chapin et al., 1987). This 

“functional balance” hypothesis is supported by data for numerous species (Buckley, 2021; 

Qi et al., 2019; van der Werf et al., 1993).  Optimal response models have also been 

developed to predict biomass allocation by assuming plants maximise photosynthetic 

uptake (McMurtrie et al., 2008), growth (Franklin, 2007) or net primary production (NPP, 

Mäkelä, Valentine, and Helmisaari 2008), using annual to decadal time-steps.  

A model to optimise the carbon storage and utilisation rate needs to consider time 

explicitly because carbon storage decouples growth from photosynthesis (Hartmann & 

Trumbore, 2016), and because the benefits of carbon storage only become apparent under 

future stress. The optimal time course can be identified using a method from the Calculus of 

Variations called optimal control theory (OCT, Lenhart & Workman, 2007). The OCT method 

can be used to calculate the optimal trajectory of selected variables, such as allocation 

parameters, which optimise fitness outcomes over a time course, rather than at a given 

point in time. For example, Cowan & Farquhar’s optimisation approach used OCT to 

maximise the sum of photosynthesis over a day. Theoretical analysis of plant allocation 

patterns using OCT has mostly focused on using reproductive efforts as a proxy for plant 

fitness. For example, OCT has been applied to determine the optimal balance between root 

and shoot allocation that maximises reproductive output (Iwasa & Roughgarden, 1984; 

McMorris, 2020), and to determine the optimal time course of storage in both annual and 

perennial plants (Chiariello & Roughgarden, 1984; Iwasa & Cohen, 1989). Another example 

of OCT application found the optimal allocation of carbon to fungal partners in a mutualist 



31 

 

relationship with plants that maximised plant growth (Moeller & Neubert, 2016). OCT is a 

promising technique to examine active storage utilisation trajectories.  

Fitness is traditionally associated with reproductive output (Johansson et al., 2018) 

which is difficult to quantify and model (Obeso, 2002; Oddou-Muratorio et al., 2018, 2020). 

In nature, plants use a number of different life history strategies that maximise their fitness 

(Bryant, 1971). For example, seed size (Muller-Landau, 2010), rate of growth (Rose et al., 

2009), and colonization strategy (Rüger et al., 2018, 2020) all contribute to the overall 

fitness of an individual over its lifetime. At shorter timescales, proxies that do not directly 

contribute to reproduction, must be considered. For example, when a single drought event 

is considered, the plant may prioritise survival over reproductive effort. To do that, a plant 

can vary its carbon storage versus utilisation rate, otherwise referred to as the growth-

storage trade-off (Myers & Kitajima, 2007). Therefore, plants may maximise growth or 

storage during stress as a proxy for their life history strategy.  

Depending on the complexity of the modelled problem, OCT can provide either a 

tractable, analytical solution to the dynamics of carbon allocation to storage, or a numerical 

solution. A toy model can be used with OCT to examine the dynamics of active carbon 

storage. A toy model is a simplified model that captures some dynamics of carbon allocation 

to storage under stress, but with reduced complexity to make solution of the problem more 

tractable. The aim of this work is to provide insight into the optimal active storage allocation 

under stress. By applying OCT to a toy model representing a plant subjected to a simple 

drought stress regime, the optimal dynamic allocation patterns can be calculated for a range 

of environmental conditions and fitness assumptions. The aims of this chapter are therefore 

to: 

1. Create a toy model that describes plant carbon storage and growth under drought 
stress 

2. Apply OCT to predict the optimal pattern of optimal storage utilisation trajectory 
(OSUT) under drought stress  

3. Examine how the optimal pattern of storage utilisation varies with different fitness 
objectives and environmental conditions 
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2.2 Methods 

2.2.1 Toy Model 

The purpose of a “toy” model is to examine a physiological process by restricting a 

model to only those elements that are necessary to explore the process. Therefore, the 

approach taken is not to describe the process comprehensively, or precisely, in physiological 

or molecular terms, but to capture the main features as simply as possible. Here, I use a 

simple representation of plant carbon uptake and use, including stored carbon 

accumulation and utilisation. Crucially, all processes captured are modelled as linear 

processes which allows for the creation of a tractable model.  

The plant is represented simply, with only two carbon pools: biomass (𝑀) and 

storage (𝑆), which are affected by the biological processes of photosynthesis (𝐴), respiration 

(𝑅), and growth (𝐺). There is also a single soil water pool (𝑊) which is reduced by 

evapotranspiration (𝐸; see Equation 2-1 and Figure 2-1).  

 

Figure 2-1 Conceptual model of a plant. The model consists of two carbon pools (storage, yellow and biomass, green) and a single water 

pool (blue). Storage (S) represents available labile carbon that can be used for respiration (R) or growth (G) of the plant. Photosynthetic uptake 

(A) is first delivered to storage to later be utilised for respiration and growth of biomass. The Available Water pool is depleted through 

evapotranspiration as the plant photosynthesises. 

The model represents photosynthesis, water use, and growth during a drought 

period. The soil water pool 𝑊 is defined as the amount of water available for use by the 

plant. There is no water input during the drought and, therefore, the only water available to 

the plant is the initial available water, 𝑊!. The lower this initial value is, the less water is 

available to the plant during the drought period and, thus, the higher the stress applied to 

the plant.  
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For simplicity, plant biomass, 𝑀, is represented as a single pool, and not 

differentiated into different tissue. The storage pool 𝑆 consists of the labile carbon, which 

can be used for respiration or building biomass. The maintenance respiration rate depends 

on biomass. Biomass growth depends on the size of the storage pool and size of the storage 

utilisation rate 𝑢" which determines the proportion of stored carbon utilised for growth. The 

time course of “utilisation of stored carbon to biomass” is flexible, and can be optimised, 

using OCT, once the fitness objective is defined. 

The storage pool can be increased through photosynthesis (𝐴), can be used for 

respiration (𝑅), or utilised for growing biomass (𝐺). This is captured in Equation 2-1: 

𝑓# = 𝑆̇ = 𝐴 − 𝑅 − 𝐺        (2-1) 

Further, the model specifies that biomass 𝑀 is changed only through increases in 

biomass 𝐺: 

𝑓$ = 𝑀̇ = 𝐺          (2-2) 

Briefly, the individual processes are modelled as linear processes based on the size 

of the biomass 𝑀 and the storage pool 𝑆. Specifically, photosynthesis 𝐴 is directly 

proportional (by the photosynthesis parameter 𝑘%) to the amount of biomass 𝑀: 

𝐴 = 𝑘%𝑀         (2-3) 

Likewise, the model specifies respiration 𝑅 to be directly proportional to the amount 

of biomass 𝑀 with a respiration parameter 𝑘&: 

𝑅 = 𝑘&𝑀         (2-4) 

The plant moves carbon from the storage pool 𝑆 to biomass 𝐺 at the storage 

utilisation rate 𝑢": 

𝐺	 = 	𝑢"𝑆          (2-5) 

The maximum of the storage utilisation rate 𝑢" is given by the maximum storage 

utilisation parameter 𝑘': 

0 ≤ 𝑢" ≤ 𝑘' ≤ 1         (2-6) 
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A plant is considered alive only while its storage pool 𝑆 is greater than or equal to 

zero, which in turn is equivalent to final storage size being greater than or equal to zero 

(further explained in Appendix 2.6):  

𝑆" ≥ 0 ⇒ 𝑆( ≥ 0          (2-7) 

If a plant’s storage pool 𝑆 goes below zero, it is considered dead.  

2.2.2 Environment  

At the outset, the plant enters a deterministic drought period of length 𝑇 with a specified 

initial soil water pool (𝑊!). No additional water is supplied during the observed period and 

post-drought conditions are ignored. The plant uses up the soil water as it photosynthesises 

through the water use parameter 𝑘): 

𝑓* = 𝑊̇ = −E = −𝑘)𝐴 = 	−𝑘)𝑘%𝑀     (2-8) 

𝑘) can be considered as the inverse of the water use efficiency (Bierhuizen & 

Slatyer, 1965; Sinclair et al., 1984). The soil water pool is constrained within the model to 

always be positive: 

𝑊" ≥ 0          (2-9) 

Photosynthesis is dependent on the water availability. The photosynthesis 

parameter 𝑘% is a constant when the available soil water is positive and becomes zero when 

W goes to zero: 

𝑘% = 6
0	when 𝑊 = 	0
𝑘%∗ 	when 𝑊 > 0       (2-10) 

The time at which the available water goes to zero is denoted 𝑡,&-". 

In order to satisfy the plant’s metabolic requirements when the plant is 

photosynthesising, the photosynthetic gain must be greater than metabolic costs. This is 

implemented by constraining the value of 𝑘%∗ : 

𝑘%∗ > 𝑘&           (2-11) 
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2.2.3 Parameter Estimation 

Table 2-1 lists the relevant parameters, with units and baseline values. Values are derived 

from a study by Drake et al. (2019) in which young Eucalyptus tereticornis trees were 

exposed to factorial warming x rainfall reduction treatments in whole-tree chambers for 15 

months. Parameters were obtained from the control treatment trees. The drought length 𝑇 

was set to 150 d.  

From height and diameter increments reported in the experiment, together with 

data for the final dry matter (12 kg mass approximated to 6 kg C), a linear growth rate was 

approximated (305 g C/month) resulting in an estimation of a plant size at the start of the 

observation of 3.85 kg C. This total plant size was then distributed between the storage pool 

𝑆 and the biomass pool 𝑀. The total NSC concentration varies greatly both within and 

among Eucalyptus tree components: between 6% and 31% in leaves (e.g., Aspinwall et al., 

2016; Chen et al., 2020); 5% and 12% in stem wood (e.g., Chen et al., 2020; Mitchell, 

O’Grady, Tissue, et al., 2014); and up to 22% in below-ground organs (e.g., Mitchell, 

O’Grady, Tissue, et al., 2014; Smith et al., 2018). Here, a ratio of 1:6 for the initial 𝑆:𝑀 was 

estimated as an average that accounts for this variability in pool concentrations and the 

contribution of individual pools to the total biomass. 

In Drake et al. (2019), respiration per unit mass varied between 0.02 g C g-1 C d-1 and 

0.12 g C g-1 C d-1. It exhibited a linear relationship with relative growth rate. The respiration 

range, in this case, includes both growth and maintenance respiration, but the model does 

not differentiate between respiration types. A conservative value of 𝑘& = 0.06	gC	g-1C	d-1 

was chosen as the respiration parameter. In the same study, the total plant respiration was 

approximately 0.3 of GPP. Since, in the model, both respiration and photosynthesis are 

linear functions of biomass, the photosynthetic parameter, 𝑘%∗ , was derived as 𝑘%∗ =
.!
!.0
=

0.2	gC	g-1C	d-1. 

The maximum storage utilisation parameter, 𝑘', is derived from the relative growth 

rate (RGR) value and the aforementioned 1:6 ratio between the storage and biomass pools. 

With the RGR value in the Drake et al. (2019) study estimated between 5 and 15 mg C g C-1 
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proxy considered here is, therefore, to the final storage at the end of the stress period (Φ6; 

herein MaxS): 

Φ6 = 𝑆(            (2-13) 

The final size of the storage pool can be taken to represent fitness because a large 

storage pool at the end of the stress period can be used to recover after the stress event 

and may increase carbon available for reproductive effort following stress. Post-stress, 

plants can redirect stored carbon to reproduction (a strategy referred to as “capital 

breeding”, Stearns, 1989) thus increasing their evolutionary fitness (Kozlowski, 1992). 

However, reproduction is not explicitly included in the model, which focuses on survival 

during a single stress period. Increased growth can become detrimental to the plant as 

additional biomass will increase costs, thus decreasing storage and potential carbon for 

reproduction. However, while a smaller plant might have increased survival chances as a 

result of this strategy, it is less likely to perform competitively against plants with strategies 

maximising their competitive output through growth. Thus, the MaxS strategy is more 

advantageous when the stress risk is significant enough to warrant a large storage pool and 

benefits to reproduction can accumulate over a lifetime.  

The two alternative fitness proxies may represent fitness in different environments, 

but they may also be thought of as representing different life-history strategies. Variations 

in life-history strategies are often observed within a single environment, both in terms of 

individual traits, but also the individual position on a trade-off spectrum (Clark et al., 2007; 

Rüger et al., 2020). The MaxM and MaxS strategies differ in their trade-offs to stress risk, 

survival, and overall benefits to lifetime reproduction. Hence, we can consider MaxM to be 

a “risky” strategy and MaxS to be a “safe” one. In the following chapter, I examine the 

competitive interactions among these different strategies. However, in this chapter I 

examine one long-term overall fitness objective at a time and identify the allocation 

strategy that maximises that fitness objective. In addition to MaxM and MaxS, I also 

consider fitness objectives that are linear combinations of these two objectives:  

Φ." = 𝑘4𝑀( + G1 − 𝑘4H𝑆(         (2-14) 
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Where 𝑘4	is the fitness parameter taking on a value between 0 and 1. Clearly, MaxM 

and MaxS are special cases of Φ."  with 𝑘4 = 1 and 𝑘4 = 0, respectively. This work examines 

the special cases as well as the effect of intermediate range of 𝑘4 values. 

2.2.5 Solution for MaxS 

The approach taken here is to initially find the optimal allocation trajectory (𝑢") which 

maximises the final storage pool (𝐽 = Φ#; where 𝐽 refers to the function being maximised). I 

solve it using the Pontryagin Maximum Principle (Boltyanskii et al., 1960) from optimal 

control theory (Lenhart & Workman, 2007; Stengel, 2012). Following the definition of the 

analytical expressions which form a solution for the MaxS problem a simulation (numerical 

solution) approach is undertaken.  

Below, I explain how the Hamiltonian, the state dynamics, and the optimal trajectory are 

defined. Full derivation of the solutions is given in Appendix 2.6. 

The three state dynamics (𝑓#, 𝑓$ and 𝑓*	, Equations 2-1, 2-2 and 2-8 respectively) are 

referred to in optimal control vernacular as “dynamic constraints”. They are used to define 

the Hamiltonian as: 

ℋ =	𝜆$𝑓$ +	𝜆#𝑓# + 𝜆*𝑓* +	𝜇*𝑐744# 6
𝜇* = 0	if	𝑐744# < 0	
𝜇* ≥ 0	if	𝑐744# = 0   (2-15) 

The three adjunct variables (𝜆$, 𝜆# and 𝜆*) each correspond to one of the dynamic 

constraints. The water constraint is represented by the last term in Equation 2-15, in which 

𝜇*	is the Lagrange multiplier corresponding to the water constraint “in effect” (i.e., the 

constraint is being satisfied), 𝑐744*: 

𝑐744* = −𝑊" ≤ 0         (2-16) 

A partial derivative of the Hamiltonian, with respect to the corresponding state 

variable, can be used to find the dynamics of the adjunct variables. As such, the dynamics 

for the adjuncts are: 

𝜆$̇ = − 8ℋ
8$

= −𝜆#G𝑘% − 𝑘&H + 𝜆*𝑘)𝑘%     (2-17) 

𝜆#̇ = − 8ℋ
8#
= 𝑢"(𝜆# − 𝜆$)         (2-18) 
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𝜆*̇ = − 8ℋ
8*

= 𝜇* 6
𝜇* = 0	if −𝑊" < 0	
𝜇* ≥ 0	if	 − 𝑊" = 0      (2-19) 

Moreover, the terminal adjuncts can be found by partially differentiating the goal 

function by the corresponding state: 

𝜆$( =	
8:$
8$
Q
";(

= 0	        (2-20) 

𝜆#( =	
8:$
8#
Q
";(

= 1	        (2-21) 

𝜆*( =	
8:$
8*
Q
";(

= 0	        (2-22) 

When possible, the optimal trajectory for 𝑢" is estimated in a similar way to the 

adjunct dynamics: a partial derivative of the Hamiltonian with respect to 𝑢" set to 0 (8ℋ
8<%

=

0), which will give a value for maximising the Hamiltonian with respect to 𝑢". Therefore, 

unless 𝑢" appears only in linear functions, this expression can be used to derive an 

expression for optimal 𝑢".  

However, because 𝑢" only appears in linear relationships in the model, I apply the 

Pontryagin Maximum Principle: I find the conditions under which ℋ is maximised through 

observing the Hamiltonian dependence on 𝑢" directly, rather than through a partial 

derivative. This involves finding the part of the Hamiltonian which is dependent on the 

control 𝑢" and choosing boundary values that will maximise the result: 

𝑢!∗ = arg max
#! %,',(,)",)#,)$

ℋ ⇒ 	arg max
#! %,)",)#

𝑢!𝑆(𝜆' − 𝜆%)	 ⇒ 𝑢!∗ = .𝑘* if 𝜆' > 𝜆%
0 if 𝜆% > 𝜆'

   (2-23) 

This indicates that the behaviour of the trajectory follows the so-called “bang-bang” 

behaviour (Lenhart & Workman, 2007), where the control variable (the optimal storage 

utilisation rate, 𝑢"∗) takes on only the minimal or maximal value within the allowed bounds.  

Following on from Equation 2-23, I can find the optimal solution by solving the 

adjuncts backwards. Three scenarios must be considered. First, either water is limiting, and 

therefore the soil water pool is depleted at or before the end of the simulated period (𝑊( =

0). Second, water is not limiting, and the soil water pool is not depleted at the end of the 

simulation (𝑊( > 0). Finally, water availability is inadequate, and the plant “dies” during the 

simulation. In such a case, water is depleted before the end of the season (𝑊" = 0), 
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photosynthesis ceases, and the storage pool is insufficient to support the plant (𝑆( < 0). 

This scenario breaks the constraints of the model but a boundary value of 𝑊!=-> can be 

defined such that water is limiting (𝑊( = 0) and storage is depleted at the end of the 

simulation (𝑆( = 0).  

When explaining the solution (see Results, below), I first consider the water limiting 

scenario (𝑊( = 0) and then discuss the implications for the non-limiting water scenario and 

the inadequate water scenario as well as other implications which emerge from the analysis. 

Because the adjuncts inform the value of 𝑢"∗, we can start with calculating the 

adjuncts backwards. Equations 2-20, 2-21 and 2-22 specify the terminal conditions of the 

adjuncts. From Equation 2-23 we know that 𝑢"∗ = 0. Because 𝑊( = 0 we can also deduce 

that 𝑘% = 0. This indicates that the adjunct dynamics for the final period of the simulation 

are: 

𝜆$̇ = − 8ℋ
8$

= 𝑘&         (2-24) 

𝜆#̇ = − 8ℋ
8#
= 0         (2-25) 

𝜆*̇ = − 8ℋ
8*

= 𝜇* 6
𝜇* = 0	if −𝑊" < 0	
𝜇* ≥ 0	if	 − 𝑊" = 0      (2-26) 

Thus, both 𝜆$ and 𝜆* are increasing and 𝜆# remains constant for the duration of this 

period. Since, at the end of this phase, 𝜆# is higher than the other two adjuncts, at no point 

during this phase will 𝜆# meet 𝜆$, a condition for a change in the behaviour of 𝑢"∗. Instead, 

the only thing that can happen is that the beginning of this period is marked by water 

availability going to zero with the onset of stress, 𝑡,&-". The boundary for the final, stress, 

period is, therefore, 𝑡,&-" < 𝑡 ≤ 𝑇. Figure 2-2 illustrates the behaviour of the adjuncts 

throughout the simulation.  
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Figure 2-2 A: Trajectory of the adjunct values over the three phases of optimal growth: growth, storage and stress. B: Values of the storage 

utilisation rate 𝑢# and the photosynthesis parameter 𝑘$ throughout the three phases of optimal growth.  

Immediately prior to the stress period is the period during which the plant depletes 

the soil moisture. For the duration of this period, the plant has sufficient water and 

therefore 𝑘% = 𝑘%∗ . Since 𝜆# > 𝜆$ we can further deduce that 𝑢" = 0. Therefore, the 

adjunct dynamics for this period are: 

𝜆$̇ = − 8ℋ
8$

= G𝑘%∗(λ*𝑘) − 1) + 𝑘&H      (2-27) 

𝜆#̇ = − 8ℋ
8#
= 0        (2-28) 

𝜆*̇ = − 8ℋ
8*

= 0        (2-29) 

Again, the trajectories of the adjuncts, specifically 𝜆# and 𝜆$, must be determined 

since they determine the control parameter. While 𝜆# remains constant for this period, 𝜆$ 
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decreases linearly (as 𝜆* is negative and 𝑘& < 𝑘%∗ ). Therefore, at the beginning of this 

middle period 𝜆# and 𝜆$ are equal. The boundary for this middle period is: 𝑡' < 𝑡 ≤ 𝑡,&-". In 

this middle period, the plant has access to soil moisture but does not grow; I therefore call 

this period the storage period.  

Prior to the storage period, 𝜆# < 𝜆$ and carbon allocation can occur (𝑢"∗ = 𝑘'). I call 

this period the growth period. The adjunct dynamics are:  

𝜆$̇ = − 8ℋ
8$

= −𝜆#G𝑘%∗ − 𝑘&H + 𝜆*𝑘)𝑘%∗      (2-30) 

𝜆#̇ = − 8ℋ
8#
= 𝑘'(𝜆# − 𝜆$)        (2-31) 

𝜆*̇ = − 8ℋ
8*

= 0        (2-32) 

No other changes occur within the adjunct dynamics that would suggest the crossing 

of the two storage and biomass adjuncts. Therefore, it can be determined that there are no 

further stages within the simulation.  

In general, therefore, there are three periods that can be distinguished in the 

optimal trajectory: growth, storage, and stress. They can be characterised as: 

• Growth: 𝑡 < 𝑡&, 𝑢'∗ = 𝑘&, 𝑊' > 0 

• Storage: 𝑡& < 𝑡 ≤ 𝑡)*+', 𝑢'∗ = 0, 𝑊' > 0 

• Stress: 𝑡)*+' < 𝑡 < 𝑇, 𝑢'∗ = 0, 𝑊' = 0 

This is the general solution for the optimal trajectory. As explained above, there are 

two special cases where the trajectory differs from this three-stage trajectory: 1) water is 

never limiting (𝑊( > 0); 2) initial water availability is insufficient to support the plant, and 

death occurs. Moreover, there also may be a third alternative trajectory:  there is enough 

water for the plant to survive but not to support any growth if the fitness goal is to 

maximise storage.  

In the first special case, only the first two stages of the three-stage growth will be 

observed: growth and storage. The value of W above which water is not limiting for the 

MaxS fitness goal (herein 𝑊!,#=@A) can be found by looking for the value of 𝑡' where there is 
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no additional benefit to storing (𝑡',#=@A∗ ; this value can be found numerically) and solving for 

the required water: 

𝑊!,#=@A = 𝑘%𝑘) ∫ 𝑀"dt"&$'()
∗

! +𝑀"&$'()
∗ 𝑘%𝑘)(𝑇 − 𝑡'#=@A∗ )  (2-33) 

In the second case, no growth is observed. The minimum initial water availability, 

𝑊!=->, below which the plant is not viable can be found by solving for the 𝑊! that gives rise 

to 𝑆( = 0 while not supporting any growth to the plant (𝑡' = 0): 

𝑊!=-> = 𝑘)(𝑘&𝑀!𝑇 − 𝑆!)       (2-34) 

In the third case, the optimal  𝑡' = 0, in which case there will be no growth stage, 

only the storage and stress stages. The value of the initial water availability below which this 

special case occurs can be calculated by looking at the amount of water required to satisfy 

the plant’s photosynthetic demand if it remains at its initial size for the entire period of the 

simulation, given by: 

𝑊!'"B&7 = 𝑘%𝑘)𝑀!𝑇          (2-35) 

The Appendix 2.6 contains the detailed derivation of this value and further details of 

the derivation of the optimal control trajectory for the MaxS and other Φ."  strategies. 

2.2.6 Solution for MaxM 

The MaxM is solved in a similar fashion as MaxS but two changes must be applied: 

First, the storage constraint (Equation 2-7) must be explicitly adjoined onto the 

MaxM goal function, 𝐽$C , as a Lagrange multiplier: 

𝐽$C = 𝑀( + 𝜈𝑆(         (2-36) 

where 𝜈 is the Lagrange multiplier corresponding to constraint in Equation 2-31, 

noting that 𝜈 is positive. 

While the adjunct dynamics remain the same (i.e., there are no changes to the 

dynamic constraints or the constraint during the simulation run), the terminal adjunct 

values will be different to account for the changes in the goal function and the end point 

constraint: 
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𝜆$( =	
8:$
8$
Q
";(

= 1	        (2-37) 

𝜆#( =	
8:$
8#
Q
";(

= ν        (2-38) 

𝜆*( =	
8:$
8*
Q
";(

= 0	        (2-39) 

In order to see if the solution to this problem follows a similar trajectory to the MaxS 

trajectory, the relationship between 𝜆#( 	and 𝜆$(  must be established. Again, I first consider 

the case where there is no water at the end of the simulation. In this case, no 

photosynthesis can be enforced in the last period. If 𝜆$( > 𝜆#(  and the plant is allocating to 

biomass during the last period, little benefit is given to the plant, but its metabolic costs are 

increased. Instead, it’s more likely that 𝜆$( < 𝜆#(  and the three-stage growth pattern is 

observed as per the MaxS solution. With regards to the dynamics of the adjuncts, the final 

solution will also include the same three phases: growth, storage and stress separated by 𝑡' 

and 𝑡,&-".  

As with the MaxS solution, alternative trajectories can be described based on initial 

water availability for which the behaviour of the system may vary from the 3-phase growth 

pattern (growth – storage – stress). These cases are: 1) initial water availability is insufficient 

to support the plant, and death occurs; 2) there is enough water for the plant to survive but 

the amount of water is insufficient to support any growth with respect to the goal of 

maximising final biomass; 3) water is limiting (𝑊( = 0) but growth is supported from stored 

carbon such that the time of water depletion (𝑡,&-") and growth cessation (𝑡'∗) is reversed 

(𝑡,&-" < 𝑡'∗ < 𝑇) but a plant must still experience a storage phase; 4) water is limiting (𝑊( =

0) but the plant is able to grow throughout the entire simulation (𝑡,&-" < 𝑡'∗ = 𝑇); and, 

finally, 5) water is never limiting (𝑊( > 0); 

Firstly, if the initial water availability is too low, the plant will not survive; the 

minimum water availability for survival (𝑊!=->) can be found as per Equation 2-34. 𝑊!=-> 

also satisfies special case (2) and any value above 𝑊!=->will follow the established 3-phase 

growth pattern. 

For initial water availability above 𝑊!=->, cases (3), (4) and (5) can be found by 

defining the boundary conditions in terms of the relationships between  𝑡'∗ , 𝑡,&-" and 𝑇. The 
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first of these values I term 𝑊!&7D to indicate the time point at which 𝑡'∗ and 𝑡,&-" become 

reversed. The second, the necessary water for which the plant grows for the entirety of the 

simulation, is referred to 𝑊!E&B). Both 𝑊!&7D and 𝑊!E&B) must be obtained numerically.  

The final case, the value above which the plant is no longer stressed, 𝑊!,$=@A, can 

be found analytically by looking at the water value necessary for the plant to sustain growth 

for the entirety of the simulation (𝑡'∗ = 𝑇): 

𝑊!$=@A = 𝑘%𝑘) ∫ 𝑀"dt(
!         (2-40) 

2.2.7 Numerical Solution of Optimal Switch Time 

The analytical solution described above demonstrates that the optimal trajectory consists of 

maximum storage utilisation up to an optimal switch time 𝑡'∗ followed by zero storage 

utilisation. Thus, the optimal trajectory can be summarised in terms of the value of 𝑡'∗. Here, 

I solve the value of 𝑡'∗ numerically, using a simulation approach applied to the simplified 

model (Equations 2-1 to 2-11). The classic Runge-Kutta method is explicitly implemented to 

solve the model in continuous time using a time-step size of Δ𝑡 = 0.1𝑑. The approach 

generates storage and biomass trajectories for all possible values of 𝑡' (0 – 150 days). From 

these results, I find the 𝑡' value that gives the maximum value of the goal function. Given 

the bang-bang solution obtained analytically, this 𝑡∗ value will give the optimal trajectory 

within the given time resolution. The source code for this simulation is freely available at 

the repository https://github.com/foxeswithdata/StoringForDrought. 

2.3 Results 

2.3.1 Storage Schedule 

2.3.1.1 Description of the general solution 

The emergence of the two dividing time points, the time switch 𝑡' and the time of water 

depletion 𝑡,&-" , leads to a three-phase storage utilisation strategy, illustrated for a range of 

𝑡' values in (Figure 2-3). In the first phase (0 < 𝑡 < 𝑡'), i.e., the growth period, the plant 

uses a proportion of the storage it has available to growing its biomass, thus increasing 

subsequent photosynthate production (𝐴). During this time, biomass and storage grow 

exponentially while water is being used up at an increasing rate as the biomass growth leads 

to exponential water loss.  



47 

 

During the second stage (𝑡' < 𝑡 < 𝑡,&-"), the storage period, the utilisation rate goes 

to zero thereby halting any biomass growth. Respiration costs are continuous throughout 

this period but are smaller than photosynthetic uptake, leading to a linear increase in 

storage. The available water also decreases linearly.  

At 𝑡 = 𝑡,&-" the water runs out and photosynthesis stops. For the remainder of the 

simulation (𝑡,&-" < 𝑡 < 𝑇), the stress period, the plant must support its respiration 

requirement by drawing on any stored carbon. The storage pool decreases linearly for the 

remainder of the simulated period.  

2.3.1.2 Effect of 𝑡& on the final biomass and storage pool sizes 

The time of the switch, 𝑡', dictates the plant’s final biomass pool size, storage pool size, time 

of water depletion, and ultimate survival. A plant which switches to storing earlier has a 

higher final storage pool but lower final biomass (e.g., 𝑡' = 10d, Figure 2-3A) compared to a 

plant that switches later (e.g., 𝑡' = 20d, Figure 2-3B). On the other hand, switching to 

storing too late leads to the plant dying (e.g., 𝑡' = 30d, Figure 2-3C) as the storage pool is 

insufficient to support respiration through the stress period. 

The effect of the switch time on the fitness objective (as described by Equation 2-14) 

is further illustrated in Figure 2-4 for a range of values of the 𝑘4 life strategy parameter and 

two different stress regimes (initial water availability of 1000	kg	H2O and 3000	kg	H2O). 

The fitness objective for the MaxM strategy, (𝑘4 = 1), the final biomass size, increases as 

the switch time increases. The fitness objective for the MaxS strategy, 𝑘4 = 0, the final size 

of the storage pool, decreases as the switch time increases for lower values of the initial 

water availability (e.g., 𝑊! = 1000kgH2O in Figure 2-4A). However, for higher initial water 

availabilities (e.g., 𝑊! = 3000kgH2O in Figure 2-4B), there is a small initial increase in final 

storage as switch time increases before the decrease in final storage. Goal outcomes for 

combinations of final biomass and final storage (0 < 𝑘4 < 1) lie in between these two 

extremes. Moreover, a later switch time also decreases the time it takes for the plant to run 

out of water (Figure 2-4C). 
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Figure 2-3 Carbon and water pool trajectories using different switch times (A: 𝑡% = 10d; B: 𝑡% = 20d	and C: 𝑡% = 30d) and an initial water 

availability of 𝑊& 	= 1000kgH2O. The biomass pool (green line) increases until the switch time and then remains constant for the rest of the 

simulation. The storage pool (yellow line) increases gradually before the switch time. After the switch time, it increases linearly until the point 

at which the water runs out. It then decreases at a constant rate until the end of the simulation. With an early switch time (A, 𝑡% = 10d), 

some storage remains available to the plant at the end of the simulation. A later switch time (B, (𝑡% = 20d) leads to all the stored carbon 

being used up. Finally, in the third case (C, 𝑡% = 30d) there is not enough storage to keep the plant alive until the end of the simulation. The 

plant dies once the storage is used up (gray line).  
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Figure 2-4 A: The value of final biomass, 𝑀(, (solid green; 𝑘) = 1) and final storage, 𝑆(, (solid yellow; 𝑘) = 0) as a function of switch time 𝑡% 

for different initial soil water availabilities (1000kgH2O; 3000kgH2O). Each dot-dashed line represents an intermediate strategy 𝛷*! , where 

𝛷*! = 𝑘)𝑀( + ;1 − 𝑘)=𝑆(. Vertical dotted line represents the point beyond which the switch time will cause plant death (𝑆( < 	0). Stars 

indicate the optimal switch point for each strategy. B: relationship between time of switch and time of water depletion for two different 

values of initial soil water availability. Gray dashed line indicates values of switch time for which the plant cannot survive.  

2.3.1.3 Optimal Storage Schedule: MaxM and MaxS cases 

A value of 𝑡' = 𝑡'∗ can be found that satisfies the constraints of the model (Equations 

2-7, and 2-9) and maximises the final value of the biomass pool, MaxM, or the storage pool, 

MaxS, thereby giving the optimal solution with respect to each fitness goal (Figure 2-5). 

For the MaxM strategy, the optimal schedule involves high values of 𝑡'∗ and fast 

water depletion. A later allocation switch means there is more time for the plant to 

accumulate biomass, which increases the risk of storage pool depletion by the end of the 

simulation. This behaviour is inherent to the optimal solution: if a given switch time has 

leftover carbon in storage at the end of simulation, this carbon is “wasted” (in simulation 

terms) as it could have been allocated to increase growth instead and thus delaying the 

allocation switch time. Thus, in general, the optimal schedule has zero storage at the end of 
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the simulation. One exception to this is when there is some carbon stored at the end of the 

simulation but the remaining time in the observed period is too short to deplete it. 

Increasing the initial water availability, 𝑊!, leads to a later optimal switch time (e.g., 

20.1 days versus 94.9 days for 𝑊! = 1000kgH2O and 𝑊! = 3000kgH2O) and a significant 

increase of the final biomass size due to the extended exponential growth. It can also be 

observed that the optimal storage period decreases with increased initial water availability 

(Figure 2-5A and C). 

A different optimal behaviour is observed for the MaxS strategy. The growth period is 

minimised; for lower initial water availabilities no time is allocated for growing, 𝑡∗ = 0, (eg. 

Figure 2-5B). This implies only a two-phase growth is observed: the plant immediately stops 

growing, and the two phases involved are storage and stress.  

 

Figure 2-5 Optimal storage utilisation and water pool trajectories for plants under differing goal strategies (maximising Biomass, A and C, 

and maximising Storage, B and D) and initial water conditions (𝑊& = 1000	kgH2O, A and B, and 𝑊& = 3000	kgH2O, C and D). Vertical 

purple dashed lines indicate the optimal switch time, 𝑡%∗, and the red vertical dashed lines indicate the time the water runs out, 𝑡,-.#.  

Once water availability becomes high enough (𝑊!'"B&7 = 2772kgH2O, Equation 2-

35) a two-phase growth is observed with the final (stress) phase omitted. The plant first 
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grows and then stores for the rest of the simulation period; water is depleted at the end of 

the simulation (𝑡,&-" = 𝑇; Figure 2-5D).  

2.3.2 Environmental Conditions 

When 𝑡'∗ is used as the one-dimensional proxy for the optimal allocation schedule of 

individual life strategies, it is possible to find how the initial water availability (𝑊!) impacts 

this optimal allocation trajectory (Figure 2-6).  

There is a minimum initial water availability,  𝑊!=->, that is required for the plant to 

survive the drought period, as defined in Equation 2-34. This threshold is the minimum 

water required for the plant to survive given no allocation to biomass (𝑡' = 0) and with no 

stored carbon leftover at the end of the drought period (𝑆( = 0). For the parameter values 

in Table 2-1, 𝑊!=-> = 572	kgH2O.  

For the MaxM strategy, there are five different cases depending on the initial water 

availability. In the first case (𝑊! < 𝑊!=->), the plant cannot survive because the initial 

water availability is below the minimum required. Therefore, there is no viable optimal 

schedule.  

In the second case (𝑊!'+, < 𝑊! < 𝑊!&7D ), a three-phase growth is observed: 0 < 

𝑡'∗ < 𝑡,&-" < 𝑇. In this case the plant grows for a period and then switches to storing before 

running out of water and becoming stressed. In the optimal storage schedule, the stored 

carbon is depleted at the end of the simulation (𝑆( = 0; Figure 2-6B). 𝑊!&7D can be 

calculated numerically to be 𝑊!&7D = 3700	kgH2O. In the third case ( 𝑊!&7D < 𝑊! <

𝑊!E&B)"F), there is a three-phase growth, but stress and storage switch times are reversed 

(𝑡,&-" < 𝑡'∗ < 𝑇) and a phase of growth during stress can be observed. It can also be 

observed that the stored carbon is still depleted at the end of the simulation (𝑆( = 0; Figure 

2-6B). 𝑊!E&B)"F can be calculated numerically to be 𝑊!E&B)"F = 4700	kgH2O.  

The fourth case (𝑊!E&B)"F < 𝑊! < 𝑊!$=@A) sees the growth period extended over 

the entirety of the growing period (𝑡'∗ = 𝑇) and overlapping with the stress period (𝑡,&-" <

𝑇). This implies a 2-phase growth period: growth and growth during stress with no storage 

period observed. Additionally, storage is no longer depleted at the end of the simulation 

(𝑆( > 0).  
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For the fifth case (𝑊! > 𝑊!$=@A), no more changes in final storage and biomass 

pools are observed and both time of switch, 𝑡', and water loss, 𝑡,&-" are at their maximum, 

meaning 𝑡,&-" = 𝑡'∗ = 𝑇. This value of 𝑊!$=@A can be found numerically to be 𝑊!$=@A =

5808	kgH2O.  

The MaxS strategy has 4 cases (Figure 2-6A). The first case is the same as the MaxM 

case: 𝑊! < 𝑊!'+,  in which the plant cannot survive. In the second case (𝑊!=-> < 𝑊! <

𝑊!'"B&7), a two-phase growth is observed with the plant not allocating any C to biomass 

(𝑡'∗ = 0) and water is depleted by the end of the simulation (𝑡,&-" < 𝑇). 𝑊!'"B&7  can be 

found to be 𝑊!'"B&7 = 2772	kgH2O. 

 

Figure 2-6 . The relationship between the optimal switch time (solid line) and time of water depletion (dashed line) and initial water content 

for (A) maximising storage and (B) maximising biomass. Vertical dotted lines indicate the values of initial water content that demarcate 

different model behaviours for each strategy. Note that the x-axis limits are different between the two plots. 
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The third case (𝑊!'"B&7 < 𝑊! < 𝑊!#=@A) has a three-phase growth (𝑡'∗ > 0) and the 

available water is depleted at the end of the simulation (𝑡,&-" = 𝑇). In the fourth case (𝑊! >

𝑊!#=@A = 4075	kgH2O), the plant no longer runs out of water (𝑊( > 0) and thus was 

considered not stressed. However, unlike the “not stressed” case with the MaxM strategy, 

the plant will still stop growing at some value of 𝑡'∗ < 𝑇 because additional growth might 

lead to decreased storage (see Figure 2-4B). The value of this time of switch, 𝑡'∗, is 49.9d. 

However, the benefit of the extra growth at the beginning of the simulation period is small. 

For water availabilities above 𝑊!#=@A, when comparing between the optimal trajectory 

which switches at 𝑡'∗ = 49.9d and one that does not grow at all (𝑡'∗ = 0d), there is only an 

8% increase in the final storage size.  

2.3.3 Fitness Strategy and Environmental Variability 

Other intermediate strategies lie between the boundary strategies MaxM and MaxS. These 

fitness strategies are denoted by the fitness proxy parameter 𝑘4. The solutions for these 

intermediate strategies are shown in Figure 2-7 for two different initial water availabilities 

(𝑊! = 1000kgH2O and 𝑊! = 3000kgH2O). These optimal solutions don’t fall on a 

spectrum, but rather follow either the trajectory for the MaxM or the MaxS strategy. This 

outcome suggests that although there is a range of fitness strategies, 𝑘4, there are 

essentially only two optimal storage schedules: to either allocate as much as possible and 

deplete the storage (“risky” schedule) or allocate little to biomass and accumulate storage 

(“safe” schedule).  

As the initial water availability increases, the border between the two optimal 

storage schedules shifts: risky schedules are optimal for a wider range of fitness goals. This 

outcome is further examined in Figure 2-4A, where Φ.4 result (that is the final carbon pool 

given by Equation 2-14) are presented for a range of switch time values. The pool sizes 

either increase with lengthened growing time or decrease depending on the proportion of 

final storage and biomass size in the final carbon outputs. For larger values of 𝑊!, the size 

increases first peaked at the MaxS optimal 𝑡'∗. Later, size decreased for strategies that 

followed MaxS and increased for strategies that followed MaxM behaviour.  

These trends are consistent for the entire spectrum of 𝑊! values that encompass the 

drought conditions (Figure 2-8) and it can be further seen that the border between the two 
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alternative strategies decreases with higher 𝑊! but stays within the range of 0.5 < 𝑘4 < 0.7 

(Figure 2-9).  

 

Figure 2-7 The optimal switch time, 𝑡%∗ (solid line), and resulting time of water depletion, 𝑡,-.# (dashed line), for the spectrum of fitness proxy 

parameters 𝑘) for two initial soil water availabilities: 𝑊& = 1000	kgH2O (red) and 𝑊& = 3000	kgH2O (blue). 
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Figure 2-8 The optimal swtich time (𝑡%∗) as determined by the fitness proxy parameter 𝑘) and initial soil water availability 𝑊&. Colour is to 

assist the reader with the gradient following the vertical axis and indicating the value of the optimal switch time (𝑡%∗).  
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Figure 2-9 Point of shift in strategy behaviour between the MaxS safe behaviour (below line) and the MaxM risky behaviour (above line) as 

determined by the initial water availability. The fitness proxy parameter 𝑘) determines the proportion of biomass versus storage prioritised 

in the calculation of optimal trajectory. The stepwise discontinuity is an artefact of the resolution of simulation.   
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2.4 Discussion 

The key outcome of the optimisation model analysis is that the optimal storage utilisation 

trajectory during a drought is a three-phased strategy: (1) an initial period, when soil 

moisture is high, when storage is utilised at the maximum rate, increasing growth and 

future carbon gain; (2) an intermediate period, when carbon is stored and no growth occurs; 

and (3) finally the stress period when photosynthesis is inhibited and stored carbon must be 

available for respiration. While there are some alternative optimal storage utilisation 

trajectories, these usually are a simplification excluding one of the three phases, and the 

optimal pattern remains consistent for a wide range of initial water conditions and fitness 

proxies. Crucially, in almost all cases the optimal point for growth to stop occurs before the 

plant is fully stressed, leading to storage accumulation, irrespective of the objective function 

being maximised. This behaviour is often observed in droughted plants (Mitchell, O’Grady, 

Tissue, et al., 2014), but it is commonly associated with passive storage allocation (Körner, 

2003). The results presented here suggest that this pattern could also arise if there is active 

storage allocation.  

2.4.1 Active carbon storage explains observed responses of plant growth to drought 

The modelled optimal response shown in this paper may represent how plants have 

adapted to drought in nature. The tendency for non-structural carbohydrate content to 

increase at the onset of drought before later decreasing has been observed in many studies 

(Adams et al., 2017; McDowell, 2011). It is also species-specific, with species responding to 

similar conditions with different NSC dynamics. For example, a study of seasonal drought in 

nut trees showed large NSC seasonality and a big spike in NSC concentration following the 

cessation of growth in almond, but a smaller response in walnut and pistachio with NSC 

concentrations remaining fairly stable throughout the year (Tixier et al., 2020). Similarly, 

(Mitchell, O’Grady, Tissue, et al., 2014) showed that after subjecting Eucalyptus globulus 

seedlings to drought, the plants grew for a time before stopping and accumulation of NSC 

until photosynthesis stopped. In the same experiment, Pinus radiata seedlings, grew for a 

longer time and accumulated much less NSC before photosynthesis ceased. The time 

between the cessation of growth, 𝑡', and the cessation of photosynthesis, 𝑡,&-", is referred 
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to in physiological literature as the Carbon Safety Margin, (Mitchell, O’Grady, Tissue, et al., 

2014).  

The model results suggest that the growth – storage – stress pattern is a result of 

adopting an active, not passive, carbon storage strategy by plants. However, the observation 

of a more rapid decline of growth as compared to photosynthesis following water stress has 

generally led to the theory that plants passively accumulate carbon (Körner, 2003, 2015). Not 

only does growth cease at a higher soil water potential (lower water stress) than 

photosynthesis does, the decline of growth is much more rapid (Fatichi et al., 2014). This is 

generally attributed to physiological factors which limit growth. Growth is affected by water 

stress through its effect on cell turgor (Muller et al., 2011) which is needed to support cell 

division and expansion (Tardieu et al., 2011). Therefore, water stress, which decreases turgor 

in plant cells, leads to physiological inhibition of plant growth. However, soluble sugar, one of 

the forms stored carbon takes, plays a significant role in maintaining cell turgor and 

contributes to the plasticity of turgor to water stress (Bartlett et al., 2014). Moreover, the 

turgor loss point, that is the soil water potential at which wilting is observed, is variable across 

species and biomes (Bartlett et al., 2012) and is positively correlated with drought tolerance 

(Zhu et al., 2018). In the above-mentioned study by Mitchell et al. (2014), both Eucalyptus 

globulus and Pinus radiata seedlings stopped growth at similar water potential values 

(approximately -1.4MPa) but only in Pinus radiata this value was close to its turgor loss point 

(-1.41MPa). In Eucalyptus globulus, the more drought-tolerant of the two species, the turgor 

loss point was more negative (-2.03MPa), suggesting that growth decline was not consistent 

with a water-stress physical limitation. It is, therefore, likely that the regulation of carbon 

storage in droughted plants is actively controlled, at least in more drought-tolerant species.   

2.4.2 Factors controlling the optimal allocation trajectory  

The optimal solution is defined by two time points: the switch to storage, 𝑡', and the time of 

water depletion, 𝑡,&-", which is dependent on the first point. The switch time is a function of 

1) the optimisation goal defined as the fitness parameter 𝑘4, 2) the environment: the initial 

water availability and the length of the stress season, and finally 3) the plant size and traits 

(including the maximum storage utilisation rate, 𝑘'). Each aspect affects the plant response 

on a different level, from species- to individual- level. I discuss these properties now in turn.  
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At the species level, the optimal trajectory is determined by the optimisation goal. 

While most optimisation studies consider a single fitness proxy and vary plant parameters to 

maximise fitness here, I consider an alternative approach. Since OCT reveals dynamic 

behaviours rather than static ones, varying static plant traits in addition to allocation 

patterns may be more difficult to interpret. However, static plant traits often reveal 

important trade-offs such as slow-fast growing or stature-recruitment. By examining a range 

of fitness proxies, including the two edge cases of MaxS and MaxM, different life-history 

strategies which represent such trade-offs may be examined. Most importantly, MaxS 

represents risk-averse species while MaxM represents risk-taking species. Risk-averse 

behaviour may be exhibited by slow-growth and higher shade-tolerance (Kitajima, 1994, 

2002; Poorter & Kitajima, 2007) or by increased focus on survival as opposed to 

reproduction (Rüger et al., 2018, 2020) or recovery (Barry et al., 2012; Galiano et al., 2011). 

In turn, risk-taking behaviour may be exhibited by the opposite of the above life-history 

strategies: fast growth, low shade tolerance, pioneering and potentially higher mortality risk 

during and post-stress (Trugman et al., 2018). This is exhibited by the lower carbon safety 

margin of MaxM plants versus MaxS plants which has implications for future plant recovery, 

competition, and reproductive success. Most data on the link between NSC and other life-

history trade-offs focused on the slow-fast growth spectrum and shade-tolerance proving in 

fact that slow-growing and shade-tolerant plants do, in fact, show higher carbon stores than 

fast-growing plants (Atkinson et al., 2012; Rose et al., 2009). Moreover, when recovery 

patterns are examined, higher carbon stores are proven to aid in recovery from stress 

(Tomasella et al., 2017). Further studies examining the link between carbon storage 

strategies and life-history trade-offs may be useful in exploring these relationships further.  

Intermediate fitness proxies were also considered to examine strategies that may 

potentially highlight life-history strategies, which occur between the extremes that trade-

offs usually exhibit. However, in this model intermediate goals defaulted to either MaxS or 

MaxM behaviour. Hence, it may be sensible to consider just two potential fitness goals 

which represent different strategies. However, this phenomenon is also a limitation of the 

modelling approach: examining trade-offs often leads to the “biodiversity paradox”, the 

emergence of a limited number of strategies which do not capture real observed ranges of 
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behaviour (Clark et al., 2007). In fact, plants show a wide variety of carbon storage 

responses (Hartmann et al., 2015; Martínez-Vilalta et al., 2016). The model used in this 

study examines trade-offs only on one axis (fitness proxy) which may be insufficient to fully 

capture carbon storage phenomena. While more detailed examination of population 

dynamics and its modelling is beyond the scope of this chapter it must be acknowledged 

that no model can recreate all possible trade-off axes in a comprehensive manner but 

further work examining linked dynamics may prove useful in explaining storage life-history 

strategies further. 

On local and regional scales, the strategy adopted is dependent on the initial water 

availability and length of stress season. The model relies on a significant simplifying 

assumption: the drought can be fully predicted, and the plant can predict of both the length 

(𝑇7>G) and water availability (𝑊!). Because a plant is not aware and is not capable of reliably 

predicting these environmental properties, this assumption leads to the conclusion that 

both 𝑊!and 𝑇7>G  must, therefore, relate to regional and local adaptations to environmental 

conditions. One way of achieving this may be through genetic and epigenetic controls which 

would have evolved in and have adapted to a local climate. Given a sufficiently predictable 

environment, such as monsoonal rainfall dynamics, the local population may have 

optimised their response to these dynamics. However, few studies have shown that plant 

carbon allocation strategies are genetically adapted to their environment; one exception is 

the work by Blumstein & Hopkins (2021) who showed that intraspecific variation in NSC 

stores can be attributed to local adaptation of different Populus trichocarpa provenance 

trees grown in a common garden experiment. Another provenance study looked at the 

carbon storage dynamics of individuals from increasingly drier climates. Seedlings from drier 

provenances show a slightly higher starch concentration to those from a wetter 

environment (Bachofen et al., 2018). Although less studied, controls due to hormonal or 

genetic expression may further help explain the differences in responses (Mund et al., 2020; 

Vacchiano et al., 2018) and elucidate the role of provenance and triggers of drought 

response (Bogeat-Triboulot et al., 2007; Liao & Bassham, 2020; Roy & Mathur, 2021).  
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Finally, at the individual level, the size of the plant and its physiological properties will 

also affect the optimal switch time. The sensitivity of the model to these aspects has not been 

explored here, but future work would benefit from such an examination. 

2.4.3 Model limitations 

Several simplifying assumptions had to be made to keep the model tractable. Firstly, the 

model represents only two carbon pools: storage and biomass. In reality, many plant organs 

have different responses to drought; root growth may increase while shoot growth slows or 

stops in response to drought (Eziz et al., 2017). Plants may reduce leaf area during drought 

to reduce loss of water through transpiration (Munné-Bosch & Alegre, 2004), and increase 

root surface area to increase water uptake, although the effectiveness of larger root 

systems in taking up more water has been debated (Bennett et al., 2015). Additionally, the 

model assumes that photosynthetic uptake is directly proportional to total biomass, 

whereas there is likely to be a saturating response as photosynthetic leaf area typically does 

not increase in proportion with biomass. A more realistic model would include different 

plant organs, and their roles in carbon and water uptake, explicitly. However, while 

increasing the number of pools could provide additional realism, it would need to be done 

in such a way as to capture the desired process characteristics, as increased model 

complexity does not always provide an improved degree of insight (McNickle et al., 2016). 

Secondly, the carbon safety margin is suggested to be physiologically related to 

hydraulic safety margin (Meir et al., 2015), which is thought to be a good predictor for plant 

mortality during drought (Anderegg et al., 2016). While water relations were not explicitly 

modelled in this study, it is possible that the optimal allocation trajectory may be associated 

with species-specific properties of the plant hydraulic system. Stomatal controls on plant 

photosynthesis were not represented in the model, other than through a complete 

shutdown of photosynthesis when soil water goes to zero. In nature, plants can control 

water loss during drought by reducing stomatal conductance as drought progresses, and the 

rate at which this occurs is linked to the plant’s hydraulic architecture. The term 

an/isohydricity refers to the plant’s ability to maintain photosynthetic activity during 

drought through control of stomatal conductance. Anisohydric species are able to keep their 

stomata open and active in higher leaf water stress and, therefore, keep C assimilation 
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positive longer into stress (Tardieu & Simonneau, 1998). An/isohydricity can be explained by 

optimality models of plant response to drought (Mrad et al., 2019) and falls reliably on the 

hydraulic safety versus carbon assimilation trade-off scale (Skelton et al., 2015). Integrating 

a model of stomatal conductance into this work may, therefore, further assist in defining 

the relationship between plant carbon strategies and hydraulic properties.  

In this model I focused only on a single, predictable, stress period, and ignored the 

possibility of stochastic variation in the duration of stress. In reality, plants experience not 

only stochastic variation of abiotic stress which may lead to increased carbon storage pools 

(Wiley & Helliker, 2012) but also biotic stress through competition which may also lead to 

alternative storage allocation strategies (Guo et al., 2016; Wu et al., 2020). Including 

stochasticity and competition will likely increase the potential stress on the plant and may 

lead to more conservative strategies. In a deterministic environment, the optimal storage 

trajectory for maximising biomass leads the exhaustion of storage pools at the end of the 

stress period. If the same strategy were to be used in a stochastic environment, a random 

decrease in the amount of water available (𝑊!) or an increase in duration of stress (𝑇7>G) 

would lead to increased stress and plant mortality. It may, therefore, be better for the plant 

to adopt a more conservative, MaxS, strategy to decrease the likelihood of mortality. 

However, in a competitive environment, this strategy is likely to suffer due to decreased 

resource acquisition when outcompeted by neighbouring plants. It, thus, follows that while 

the general shape of the solution may be similar in a stochastic and competitive 

environment, whether a “safe” or “risky” strategy survives may not be easily determined.  

 In optimisation modelling, stochasticity can be tackled using stochastic dynamic 

programming (SDP). One modelling study which used SDP to compare the allocation 

trajectory of plant allocation to conceptually different environmental stochasticity models, 

did in fact show that plant allocation strategy changed drastically between different 

stochastic models (Iwasa, 1991). When the environmental stochasticity model changed 

from a fully random model of stress to a Markov model, which captures some predictable 

patterns, the optimal plant carbon allocation changed from a fixed strategy to one which 

responded to the environment. In order to model a stochastic environment in an 

optimisation framework, one approach would be to model consider an objective function as 
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an expectation value given some rain probability (Mäkelä et al., 1996) and such an approach 

may be considered in further examination of this problem. 

When considering optimal behaviour in competition, such a dynamic can be 

examined by looking at emergent evolutionary stable strategies (Dybzinski et al., 2011) 

although ESS models are more complex and can be difficult to solve. To my knowledge no 

ESS model has examined carbon storage dynamics.  

An alternative approach to including stochastic dynamics and competition is to use 

an Individual-Based Modelling approach, such as a gap model, which explicitly model 

individual behaviour and examine emergent behaviours after a period of time. This 

approach is further examined in Chapter 3. 

Finally, the use of linear functions to describe processes, while useful in creating a 

tractable analysis, is an unrealistic assumption. It may also be contributing to the dual 

contrasting results of intermediate fitness proxy strategies resulting in an either MaxM or 

MaxS behaviour. This can be remedied by the use of saturating functions which better 

capture processes, such as photosynthesis, modelled in this study (Thornley, 1972; Wenk & 

Falster, 2015). The use of numerical solution algorithms can then be used to examine the 

model and better capture process realism (e.g. Mäkelä & Sievänen, 1992).  

2.4.4 Implications for modelling and observations 

Three aspects of the optimality approach used in this study may be important in expanding 

our understanding of how to model carbon storage allocation dynamics under stress. Firstly, 

the emergence of the bang-bang behaviour in this model highlights the importance of 

modelling phenology, that is the switch between behaviours. Phenological events may be 

affected by stress events (e.g., Adams et al., 2015; Ogaya & Peñuelas, 2004) though they are 

most often modelled as static in models (e.g., Thomas & Williams, 2014) or controlled by 

environmental conditions (e.g., Leuzinger et al., 2013). In this model the phenological event 

was the cessation of growth, which emerges in other optimal control models as well 

(summarised in Iwasa, 2000). When reproductive effort is maximised, a switch between 

allocating to vegetative and reproductive pools occurs as demonstrated in annual plants. 

This dynamic is also shown in annual dynamics of perennial plants. Leaf phenology also 
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emerges as a strategy for optimal carbon gain (Caldararu et al., 2014) as a function of 

climatic factors and length of the growing season which determine leaf phenology as a 

function of either leaf age (in tropics) or temperature constraints (in higher latitudes).  

Secondly, though less clear in this modelling exercise, modelling control mechanisms 

using marginal return values may provide a fruitful method for exploring stress responses. 

The underlying mechanism for the emergence of phenology in OCT is the relationship 

between the marginal return values for different pools. The marginal return value can be 

described as the expected gain with respect to some optimisation goal per unit of a 

resource invested in a specific pool (Bloom, 1986), for example, the return on carbon gain 

per unit invested into shoots or roots. The optimal strategy is to invest in the component 

with the highest return value (Vincent & Pulliam, 1980) or balance allocation to competing 

resources if the returns are equal (Iwasa & Roughgarden, 1984). These values provide 

crucial information and show success in models where applied (e.g., Thomas & Williams, 

2014). Adopting marginal returns may be especially useful when plants are stressed. For 

example, a strategy which allocates resources to the most limiting component according to 

its marginal return value (Chapin et al., 1987) may be an appropriate alternative to 

allometric balance allocation models which determine the allocation patterns based on set 

relationships between plant components. In nature, plants will have partitioned resources in 

a way that reflects past resource availability and stress, which may be better captured by 

models capturing marginal return values.  

Finally, using dynamic optimisation modelling to assist with data interpretation and 

model-data comparison may prove crucial in exploring plant drought response. Specifically, 

measurements of NSC and hydraulic conductance involve labour-demanding and 

destructive sampling (Quentin et al., 2015) while mechanistic modelling of plant carbon 

storage is still under way (Fatichi et al., 2019). High resolution time-series data of carbon 

allocation and storage dynamics are relatively scarce, with many studies measuring NSC at a 

single time point to compare between a treatment and control pool (e.g., Palacio et al., 

2020). When time-series data is produced the resolution of measurement rarely exceeds 

twice a month (e.g., Tixier et al., 2020). Extrapolating carbon storage patterns during 

drought, based on a small number of time points, would be highly beneficial. This can 
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potentially be done using more realistic dynamic optimisation models which incorporate 

carbon and hydraulic processes. Coupled with other, easier to measure, carbon and 

hydraulic measurements, such as photosynthesis, stomatal conductance and leaf and soil 

water potentials, carbon storage trajectories could then be predicted from low resolution 

data using such dynamic optimisation models to further explore plant drought response.  

2.5 Conclusions and Future Work 

In this work I have shown that a modelled optimal carbon storage allocation trajectory can 

explain some of the observed patterns of carbon storage dynamics in response to water 

stress. The cessation of growth before photosynthesis may be an active storage response 

rather than a purely passive outcome of physiological growth limitation. Following from this 

work, the use of phenological observations such as growth cessation or NSC maxima during 

stress may assist in explaining observed variability in drought tolerance and allocation 

strategies of different species. Although many important processes were omitted in this 

simplified model approach, the dynamics observed in this model can further aid in 

developing mechanistic models of carbon storage processes. Future work would be aided by 

exploring the resulting dynamics of optimal carbon allocation in simulated environments 

using more detailed modelling, as well as exploring the connection to optimal modelling of 

plant carbon and hydraulic dynamics during drought.  
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2.6 Appendix: Derivation of OCT solution 

In this appendix I derive the solution to the optimal control problem of the toy model. In 
order to solve an OCT problem, one must first write an extended goal function and the 
Hamiltonian function which define the problem and incorporate constraints at the terminal 
point and during the observed period. Next, a set of adjuncts is derived from these functions 
and the problem is solved backwards for the adjuncts and forwards for the dynamic 
constraints. From the combination of these two, a full solution to an OCT problem can be 
found.  

I first derive the Hamiltonian and adjunct functions, then derive the solution to the 
dynamic constraints. Next, I consider different terminal conditions and a set of solutions is 
then found.  

Finally, the special cases of MaxM (𝑘4 = 1) and MaxS (𝑘4 = 0) are considered 
separately.  

2.6.1 General solution 

2.6.1.1 Setting out the problem 

I consider here the general solution in which the goal is expressed as:  

Φ = 𝑘4𝑀( + G1 − 𝑘4H𝑆(         ( 2-41 )  

Once this general solution is analysed, I then consider the special cases of 𝑘4 = 1 
(MaxM) and 𝑘4 = 0 (MaxS). 

Dynamic constraints are given as: 

𝑓$̇ = 𝑀̇ = 𝑢"𝑆         ( 2-42 ) 

𝑓#̇ = 𝑆̇ = (𝑘% − 𝑘&)𝑀 − 𝑢"𝑆        ( 2-43 ) 

𝑓*̇ = 𝑊̇ = −𝑘%𝑘)𝑀         ( 2-44 ) 

With the following static constraints enforced on the states, control, and parameters: 

𝑊" ≥ 0          ( 2-45 ) 

𝑆" ≥ 0           ( 2-46 ) 

0 ≤ 𝑢" ≤ 𝑘' ≤ 1          ( 2-47 ) 

𝑘% = 6
0 if 𝑊 = 0
𝑘%∗ if 𝑊 > 0        ( 2-48 )  

𝑘%∗ > 𝑘&           ( 2-49 ) 

If storage reaches zero and there is no additional photosynthetic gain the plant is 
assumed to have died.  
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The general form of the Hamiltonian is given as: 

ℋ(𝑡) = 𝝀((𝑡)𝒇(𝑡) − 𝝁(𝒄𝒆𝒇𝒇(𝑡)       ( 2-50 ) 

where 𝝀(𝑡) is the vector of adjunct variables, 𝒇(𝑡) are the dynamic constraints, 𝝁(  are 
the Lagrange multiplier and 𝒄𝒆𝒇𝒇(𝑡) are the constraints in effect. In this model the 
Hamiltonian is therefore: 

ℋ(𝑡) = 𝜆$(𝑢"𝑆) + 𝜆# cG𝑘% − 𝑘& 	H𝑀 − 𝑢"𝑆d − 	
𝜆*𝑘)𝑘%𝑀 + 𝜇#	𝑐# + 𝜇*𝑐*       ( 2-51 ) 

where 𝜇# and 𝜇* take on a positive value when their respective pools (storage and 
water) are 0, and are 0 otherwise.  

Moreover, we can expand the terminal goal function to consider the terminal 
constraints: 

ΦJ = 𝑘4𝑀( + G1 − 𝑘4 + 𝜈#H𝑆( + 𝜈*𝑊(       ( 2-52 ) 

Once again, 𝜈# and 𝜈* take on positive values only when the borderline terminal 
constraints are met (i.e. 𝑆( = 0 or 𝑊( = 0).  

Both the 𝝁 and 𝝂 values are Lagrange multipliers which only become important in the 
analysis when differential equations are used. Otherwise, they don't have any influence over 
the full form of the function.  

We can first find the terminal values of the adjunct values by looking at the respective 
derivatives of the terminal goal function with respect to the individual pools. 

𝜆$(𝑇) =
8:-
8$.

Q
";(

= 𝑘4        ( 2-53 ) 

𝜆#(𝑇) =
8:-
8#.

Q
";(

= 1 − 𝑘4 + 𝜈#       ( 2-54 ) 

𝜆*(𝑇) =
8:-
8*.

Q
";(

= 𝜈*        ( 2-55 ) 

The dynamic adjunct equations are also then defined as: 

	𝜆$̇ =	− 8ℋ
8$%

= −𝜆#(𝑘% − 𝑘&) + 𝜆*𝑘%𝑘)      ( 2-56 ) 

	𝜆#̇ =	−
8ℋ
8#%

= 𝑢"(𝜆# − 𝜆$) − 𝜇#       ( 2-57 ) 

	𝜆*̇ =	− 8ℋ
8#%

= 𝜇*         ( 2-58 ) 

Finally, the control can be found to be:  

𝑢" = max
<%,K/,K$	

ℋ = 𝑢"(𝜆$(𝑡) − 𝜆#(𝑡))      ( 2-59 ) 

As such the solution to 𝑢" can be defined as: 
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𝑢" = 6
0 if 𝜆#(𝑡) > 𝜆$(𝑡)
𝑘' if 𝜆#(𝑡) < 𝜆$(𝑡)

       ( 2-60 ) 

2.6.1.2 Constraints 

Importantly, I don’t need to consider both the terminal and state controls for both pools. 
Since 𝑊" ≥ 0 is enforced by 𝜇* and 𝑊 only decreases, the end point constraint and its 
lagrange multiplier, 𝜈*, become superfluous and can be removed.  

In the case of 𝑆" ≥ 0 the opposite can be argued. The 𝑆" = 0 is unlikely to occur unless 
photosynthetic gains and costs are balanced which becomes intractable in the analysis. As 
such the 𝜇# lagrange multiplier can be ignored.  

During the course of the analysis three distinct scenarios can be recognised. These will 
be further expanded upon for individual terminal constraints but the general patterns and 
considerations are described below. 

Let's consider first the case in which there is no photosynthetic gain. The following can 
be inferred: 

• Water is depleted: 𝑊' = 0 
• Therefore, S can only be decreasing: 𝑆̇ < 0 
• If 𝑆' = 0 and 𝑡 < 𝑇 the plant has reached mortality and the 𝑆' ≥ 0 constraint is 

violated.  

The second case is one in which there is photosynthetic gain but no growth. The 
following can then be inferred: 

• Water is depleted: 𝑊' = 0 
• Therefore, S is changing at a rate of: 𝑆̇ = :𝑘?∗ − 𝑘*<𝑀 
• Since 𝑘?∗ − 𝑘* > 0 is positive S cannot reach zero  

The final case is one in which there is both photosynthesis and growth. The following 
can be inferred: 

• Water is depleted: 𝑊' = 0 
• Therefore, S is changing at a rate of: 𝑆̇ = :𝑘?∗ − 𝑘*<𝑀 − 𝑘&𝑆 
• As storage decreases lim

@→B
𝑘&𝑆 = 0 and case 2 comes into effect 

Thus I rewrite the terminal goal function and the Hamiltonian: 

ℋ(𝑡) = 𝜆$(𝑢"𝑆) + 𝜆#((𝑘% − 𝑘&)𝑀 − 𝑢"𝑆) − 𝜆*𝑘)𝑘%𝑀 + 𝜇*𝑐*	  ( 2-61 )	

ΦJ = 𝑘4𝑀( + G1 − 𝑘4 + 𝜈#H𝑆(        ( 2-62 ) 

2.6.1.3 Solution to the dynamic constraints 𝒇̇(𝑡) 

The dynamic constraints can be solved by taking advantage of the fact that the 𝑀 and 𝑆 
dynamic constraints can be rewritten in terms of 𝑀 only: 
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𝑆̇ = (𝑘% − 𝑘&)𝑀 − 𝑢"𝑆 = (𝑘% − 𝑘&)𝑀 − 𝑀̇     ( 2-63 ) 

If the second derivative of 𝑀 is taken the above can be substituted into Equation 2-42 
to get a homogeneous second-order linear differential equation with constant coefficients: 

𝑀̈ = 𝑢"𝑆̇ = 𝑢"(𝑘% − 𝑘&)𝑀 − 𝑀̇       ( 2-64 ) 

And this can be further rewritten into the classic quadratic equation format: 

0 = 𝑀̈ + 𝑢"𝑀̇ − 𝑢"(𝑘% − 𝑘&)𝑀       ( 2-65 ) 

The solution for 𝑀, 𝑀 = 𝑒&", can be substituted in the above to get: 

0 = 𝑟M𝑒&" + 𝑢"𝑟𝑒&" − 𝑢"G𝑘% − 𝑘&H𝑒&"      ( 2-66 ) 

And the solution to 𝑟 can be found through finding the roots of the function above: 

𝑟N =
O<%PQ<%

0OR<%(.1O.!)

M
        ( 2-67 ) 

𝑟M =
O<%OQ<%

0OR<%(.1O.!)

M
        ( 2-68 ) 

Since there are two real distinct roots these can be combined to give a solution of the 
form of: 

𝑀(𝑡) = 𝐶N𝑒&2" + 𝐶M𝑒&0"        ( 2-69 ) 

𝐶N and 𝐶M can be found by substituting 𝑀! and 𝑆!. I start with the 𝑆!: 

𝑀! = 𝑀(0) = 𝐶N𝑒! + 𝐶M𝑒! = 𝐶N + 𝐶M      ( 2-70 ) 

Therefore: 

𝐶N = 𝐶M −𝑀!          ( 2-71 ) 

Using 𝑆! and 𝑀̇ = 𝑢"𝑆: 

𝑆! =
$(!)
<%

= V2&273PV0&073

<%
= (V0O$3)&2PV0&0

<%
      ( 2-72 ) 

Therefore 𝐶N and 𝐶M can be defined as: 

𝐶N = 𝑀! −
<%#3O$3&2
&2O&0

         ( 2-73 ) 

𝐶M =
<%#3O$3&2
&2O&0

         ( 2-74 ) 

As for the water pool 𝑊 this can be found by substituting the equation for 𝑀(𝑡) into 
the dynamic constraint: 

𝑊̇ = −𝑘%𝑘)(𝐶N𝑒&2" + 𝐶M𝑒&0")	      ( 2-75 ) 

The integral of this expression is (using Equation 2-69): 



70 

 

𝑊(𝑡) = −𝑘%𝑘) c
V2
&2
𝑒&2" + V0

&0
𝑒&0"d 	+ 𝐶      ( 2-76 ) 

𝐶 can by found by 𝑊! at 𝑊(𝑡 = 0) into the formula above to get: 

𝑊(𝑡) = 𝑊! + 𝑘%𝑘) c
V2
&2
(1 − 𝑒&2") + V0

&0
(1 − 𝑒&0")d     ( 2-77 ) 

The full set of solutions is therefore: 

𝑀(𝑡) = 𝐶N𝑒&2" + 𝐶M𝑒&0"        ( 2-78 ) 

𝑆(𝑡) = V2&27!2%PV0&07!0%

<%
        ( 2-79 )	

𝑊(𝑡) = 𝑊! + 𝑘%𝑘) c
V2
&2
(1 − 𝑒&2") + V0

&0
(1 − 𝑒&0")d    ( 2-80 ) 

With the constants being: 

𝑟N 	=
O<%PQ<%

0OR<%W.1O.!X

M
        ( 2-81 ) 

𝑟M 	=
O<%PQ<%

0OR<%W.1O.!X

M
        ( 2-82 ) 

𝐶N = 𝑀! −
<%#3O$3&2
&2O&0

         ( 2-83 ) 

𝐶M =
<%#3O$3&2
&2O&0

         ( 2-84 ) 

2.6.2 Detailed solution 

The detailed solutions are found by analysing the adjunct dynamics backwards and then the 
dynamic constraints forwards to find the equations. Even with just the adjunct functions, 
guides can be found about the behaviour of 𝑢" and a solution can be found by combining 
analytical and numerical solutions.  

A total of 8 terminal conditions need to be considered. In the first instance the 
values of the terminal storage (𝑆( = 0 and 𝑆( > 0) and water (𝑊( = 0 and 𝑊( > 0) pool 
sizes need to be considered. Final water pool size determines the value of 𝑘% whereas a 
positive value of the storage pool will eliminate the terminal storage constraint 𝜈#. 
Moreover, to determine the value of the storage allocation parameter 𝑢" the relationships 
between terminal values of 𝜆$ and 𝜆# are examined (as per Equation 2-60). When storage is 
positive this will depend only on the value of 𝑘4 (G1 − 𝑘4H ≷ 𝑘4 ⇒ 𝑘4 ≷ 0.5) but when 
storage is zero then the Lagrange multiplier 𝜈# will need to be considered (𝜈# + G1 − 𝑘4H ≷
𝑘4 ⇒ 𝜈# ≷ 2𝑘4 − 1). The 8 terminal conditions are: 

1. 𝑆C = 0 and 𝑊C = 0 
a. 𝜈@ > 2𝑘D − 1 
b. 𝜈@ < 2𝑘D − 1 
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2. 𝑆C = 0 and 𝑊C > 0 
a. 𝜈@ > 2𝑘D − 1 
b. 𝜈@ < 2𝑘D − 1 

3. 𝑆C > 0 and 𝑊C = 0 
a. 𝑘D > 0.5 
b. 𝑘D < 0.5 

4. 𝑆C > 0 and 𝑊C > 0 
a. 𝑘D > 0.5 
b. 𝑘D < 0.5 

I look at each of these conditions in turn and where appropriate I solve an analytical 
solution. Alternatively, I describe the general solution to give insight into the solution but I do 
not follow through with a full solution. Moreover, some solution stages will be repeated 
across different terminal conditions and whenever that happens the previously described 
stage will be referenced.  
2.6.2.1 Terminal Condition 1a 

Final Stage Backwards: Stress 

I first consider the case in which both constraints are enforced, and the storage 
terminal constraint is large enough to make 𝜆#(𝑇) > 𝜆$(𝑇) and therefore enforce the lack 
of storage in the final stage. 

The terminal pool values are: 

𝑆(𝑇) = 0          ( 2-85 ) 

𝑊(𝑇) = 0          ( 2-86 )	

The terminal adjunct values are: 

𝜆$(𝑇) = 𝑘4          ( 2-87 ) 

𝜆#(𝑇) = 1 − 𝑘4 + 𝜈#         ( 2-88 ) 

𝜆*(𝑇) = 0          ( 2-89 ) 

And finally, the values of 𝑢" and 𝑘% are: 

𝜆#(𝑇) > 𝜆$(𝑇) ⇒ 𝑢" = 0        ( 2-90 ) 

𝑊(𝑇) = 0 ⇒ 𝑘% = 0         ( 2-91 ) 

These final conditions can be illustrated in Figure 2-10A.  

The adjunct dynamics can thus be simplified: 

𝜆$̇ = −𝜆#(−𝑘&) = 𝑘&G𝜈# + 1 − 𝑘4H       ( 2-92 ) 

𝜆#̇ = 0          ( 2-93 ) 
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𝜆*̇ = 𝜇*          ( 2-94 )	

A solution can be found by integrating and substituting the terminal values of the 
adjuncts.  

𝜆$(𝑡) = 𝑘4 + 𝑘&G𝜈# + 1 − 𝑘4H(𝑡 − 𝑇)      ( 2-95 )	

𝜆#(𝑡) = (𝜈# + 1 − 𝑘4)        ( 2-96 )	

𝜆*(𝑡) = −𝜇*(𝑇 − 𝑡)        ( 2-97 )	

All the above are linear and either steady or increasing. Figure 2-10A shows the 
extended dynamics of the adjuncts and states. 
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Figure 2-10 Approximate shape of the solution for the terminal constraint 1a.  

Middle Stage Backwards: Storage 

Unless there is a change in the conditions the model will continue without any 
changes. However, moving backwards at some point in the timeline the point at which the 
water has ran out will be reached (from here on labelled 𝑡,&-"). Ultimately, I expect that this 
value will depend on the optimal strategy and initial conditions and thus it should be possible 
to estimate this value at the end of the analysis.  

At this junction the adjuncts take the following values: 
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𝜆$(𝑡,&-") = 𝑘4 + 𝑘&(𝜈# + 1 − 𝑘4)(𝑡,&-" − 𝑇)     ( 2-98 )	

𝜆#(𝑡,&-") = 𝜈# + 1 − 𝑘4        ( 2-99 )	

𝜆*(𝑡,&-") = −𝜇*(𝑇 − 𝑡,&-")        ( 2-100 )	

When water is available the value of 𝑘% changes. The following conditions are now 
taking place: 

𝜆#(𝑇) > 𝜆$(𝑇) ⇒ 𝑢" = 0        ( 2-101 )	

𝑊(𝑇) > 0 ⇒ 𝑘% = 𝑘%∗         ( 2-102 )	

Since 𝑘% is now positive and the water Lagrange multiplier is no longer in effect the 
adjunct dynamics can be now defined as: 

𝜆$̇ = −𝜆#G𝑘%∗ − 𝑘&H + 𝜆*𝑘%∗𝑘) = 	
−(𝜈# + 1 − 𝑘4)(𝑘%∗ − 𝑘&) − 𝜇*(𝑇 − 𝑡,&-")𝑘%∗𝑘)    ( 2-103 )	

𝜆#̇ = 0          ( 2-104 ) 

𝜆*̇ = 0          ( 2-105 ) 

Integrating these equations and solving for 𝑡,&-" leads to the following set of 
equations: 

𝜆$(𝑡) = 𝑘4 + G𝜈# + 1 − 𝑘4HG𝑘%∗𝑡,&-" − 𝑘&𝑇H𝑡 + 	
𝑡,&-"G𝜇*(𝑇 − 𝑡,&-")H𝑘%∗𝑘)𝑡   ( 2-106 )	

𝜆#(𝑡) = 𝜈# + 1 − 𝑘4         ( 2-107 )	

𝜆*(𝑡) = −𝜇*(𝑇 − 𝑡,&-")        ( 2-108 )	

Since 𝜆$ is decreasing I can illustrate the next stage of the analysis in Figure 2-10B. 

First Stage Backwards: Growth 

The next change in the solution behaviour occurs when 𝜆$(𝑡) = 𝜆#(𝑡) at which is the 
point at which the behaviour of the control switches. I label this point as 𝑡' (switch time). The 
overall trajectory is now defined in the final part of the progress Figure 2-10C. 

The conditions in this stage can now be defined as: 

𝜆#(𝑇) < 𝜆$(𝑇) ⇒ 𝑢" = 𝑘'        ( 2-109 )	

𝑊(𝑇) > 0 ⇒ 𝑘% = 𝑘%∗         ( 2-110 )	

The adjunct dynamics can be now defined as: 

𝜆$̇ = −𝜆#G𝑘%∗ − 𝑘&H + 𝜆*𝑘%∗𝑘) =  

−(𝜈# + 1 − 𝑘4)(𝑘%∗ − 𝑘&) − 𝜇*(𝑇 − 𝑡,&-")𝑘%∗𝑘) 	  ( 2-111 )	
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𝜆#̇ = 𝑢"(𝜆# 	− 𝜆$)	         ( 2-112 )	

𝜆*̇ 	= 	0          ( 2-113 )	

The exact value of these don't need to be found. What is most important is finding the 
value for 𝑡' should then determine the optimal trajectory. The value of 𝑡' can be found by 
solving 𝜆#(𝑡') = 𝜆$(𝑡'): 

𝑡' = (𝛼 − 𝑘4)/(𝛽(𝛼 + 𝑘)(𝜇)(𝑇 − 𝑡,&-")) − 𝑘&𝑇𝛼)				   ( 2-114 ) 

Where: 

𝛼 = 𝜈# + 1 − 𝑘4         ( 2-115 ) 

𝛽 = 𝑘%∗𝑡,&-"          ( 2-116 )	

First Stage Forwards: Growth 

In the first stage the standard solution to the dynamic constraints can be substituted. 
I repeat the solution to this stage below: 

𝑀Y(𝑡) = 𝐶N𝑒&2" + 𝐶M𝑒&0"        ( 2-117 )	

𝑆Y(𝑡) =
V2&27!2%PV0&07!0%

.&
        ( 2-118 )	

𝑊Y(𝑡) = 𝑊!𝑘%𝑘) c
V2
&2
(1 − 𝑒&2") + V0

&0
(1 − 𝑒&0")d	     ( 2-119 )	

With the constants being: 

𝑟N 	=
O.&PQ.&0OR.&W.1O.!X

M
        ( 2-120 ) 

𝑟M 	=
O.&PQ.&0OR.&W.1O.!X

M
        ( 2-121 ) 

𝐶N = 𝑀! −
.&#3O$3&2
&2O&0

         ( 2-122 ) 

𝐶M =
.&#3O$3&2
&2O&0

         ( 2-123 ) 

Middle Stage Forwards: Storage 

In the second stage the plant will stop growth but continue photosynthesis. The values 
for the control and photosynthetic parameters are, therefore: 

𝜆#,YY(𝑇) > 𝜆$,YY(𝑇) ⇒ 𝑢" = 0       ( 2-124 )	

𝑊(𝑇) > 0 ⇒ 𝑘% = 𝑘%∗         ( 2-125 )	

Since there is no growth during this period the biomass remains constant, and the 
remaining dynamics will become linear. The solution to the dynamic constraints can be easily 
simplified. If we define the values at time 𝑡 = 𝑡' to be: 
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𝑀Y(𝑡') = 𝐶N𝑒&2"& + 𝐶M𝑒&0"&         ( 2-126 )	

𝑆Y(𝑡') =
V2&27!2%&PV0&07!0%&

.&
        ( 2-127 ) 

𝑊Y(𝑡') = 𝑊!𝑘%𝑘) q
V2
&2
(1 − 𝑒&2"&) + V0

&0
(1 − 𝑒&0"&)r    ( 2-128 )	

Then these values can be used to find the solution to the simplified dynamic 
constraints:	

𝑓$̇ = 𝑀̇ 	= 	0          ( 2-129 )	

𝑓#̇ = 𝑆̇ = G𝑘% −	𝑘&H𝑀Y(𝑡')        ( 2-130 )	

𝑓*̇ = 𝑊̇ = −𝑘%𝑘)𝑀Y(𝑡')        ( 2-131 )	

Thus, the solution to this period can be defined as: 

𝑀YY(𝑡) = 𝑀Y(𝑡')         ( 2-132 ) 

𝑆YY(𝑡) = G𝑘% − 𝑘&H𝑀Y(𝑡')(𝑡 − 𝑡') + 𝑆Y(𝑡')      ( 2-133 )	

𝑊YY(𝑡) = 𝑊Y(𝑡') + 𝑘%𝑘)𝑀Y(𝑡')(𝑡' − 𝑡)      ( 2-134 )	

Final Stage Forwards: Stress 

The next stage occurs when water runs out and the plant is stressed. The control and 
photosynthetic parameters are, therefore: 

𝜆#(𝑇) > 𝜆$(𝑇) ⇒ 𝑢" = 0        ( 2-135 )	

𝑊(𝑇) = 0 ⇒ 𝑘% = 0         ( 2-136 )	

The pool values at time 𝑡,&-" when the water runs out are: 

𝑀YY(𝑡,&-") = 𝑀Y(𝑡')         ( 2-137 )	

𝑆YY(𝑡,&-") = G𝑘% − 𝑘&H𝑀Y(𝑡')(𝑡,&-" − 𝑡') + 𝑆Y(𝑡')     ( 2-138 )	

𝑊YY(𝑡,&-") = 𝑊Y(𝑡') + 𝑘%𝑘)𝑀Y(𝑡')(𝑡' − 𝑡,&-")     ( 2-139 )	

The dynamic constraint in the last period can be described as: 

𝑓$̇ = 𝑀̇ = 0          ( 2-140 )	

𝑓#̇ = 𝑆̇ = −𝑘&𝑀Y(𝑡')	         ( 2-141 ) 

𝑓*̇ = 𝑊̇ = 0          ( 2-142 )	

Thus, the pool solution to this period can be found to be: 

𝑀YYY(𝑡) = 𝑀Y(𝑡')	         ( 2-143 )	

𝑆YYY(𝑡) = 𝑘%𝑀Y(𝑡')(𝑡,&-" − 𝑡') − 𝑘&𝑀Y(𝑡')(𝑡 − 𝑡') + 𝑆Y(𝑡')   ( 2-144 ) 
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𝑊YYY(𝑡) = 0          ( 2-145 )	

And, finally, the terminal values can be found: 

𝑀YYY(𝑇) = 𝑀Y(𝑡')         ( 2-146 )	

𝑆YYY(𝑇) = 𝑘%𝑀Y(𝑡')(𝑡,&-" − 𝑡') − 𝑘&𝑀Y(𝑡')(𝑇 − 𝑡') + 𝑆Y(𝑡') = 0   ( 2-147 )	

𝑊YYY(𝑇) = 	0          ( 2-148 )	

Meaning the solution to the problem can be defined as: 

Φ = 𝑘4𝑀YYY(𝑇)         ( 2-149 ) 

The progress of the state trajectory can be found in Figure 2-10E-F. 

Final Remarks 

In order to now find the exact solutions, the values for  𝜈'	 and 𝜇* have to be found.  

This can be done by looking at 𝑆( = 0 and 𝑊(𝑡,&-") = 0. If these conditions are 
insufficient, it is then possible to use the expressions and constraints to simulate an optimal 
solution as I have done in the chapter. 
2.6.2.2 Terminal Condition 1b 

I now consider the situation in which both terminal constraints are enforced and the Storage 
terminal constraint 𝜈# < 2𝑘4 + 1 which leads to storage allocation over the last period. 
Depending on the size of the parameters and lagrange multipliers, there are upwards of 2 
stages in this solution. 

Final Stage Backwards: Stress + Growth 

The terminal values are given in Equations 2-87-89. The terminal conditions imply 
that:	

𝜆#(𝑇) < 𝜆$(𝑇) ⇒ 𝑢" = 𝑘'        ( 2-150 )	

𝑊( = 0 ⇒ 𝑘% = 0         ( 2-151 )	

The values for the adjunct dynamics can thus be found and described. 

𝜆$̇ = 𝜆#𝑘&           ( 2-152 )	

𝜆#̇ = 𝑘'(𝜆# − 𝜆$)         ( 2-153 )	

𝜆*̇ = 𝜇*          ( 2-154 )	

The 𝜆$̇ and 𝜆#̇ can be found by taking a second-order derivative of 𝜆# and finding the 
second-order linear differential equation with constant coefficients: 

𝜆#̈ = 𝑘'(𝜆#̇ − 𝑘&𝜆#)         ( 2-155 ) 
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𝜆#(𝑡) can be expressed as  𝜆#(𝑡) = 𝑒&&" and the roots and coefficients need to be 
found to define the function as: 

𝜆#(𝑡) = 𝐶#N𝑒&&2" + 𝐶#M𝑒&&0"        ( 2-156 ) 

𝜆$(𝑡) = 𝜆#(𝑡) −
V$2&$27!$2%PV$0&$07!$0%

.&
		      ( 2-157 )	

The roots can be found to be: 

𝑟#N =
Z.&PQ.&0OR(.&.!)[

M
        ( 2-158 )	

𝑟#M =
Z.&OQ.&0OR(.&.!)[

M
        ( 2-159 )	

 

Figure 2-11 Approximate shape of the solution for the terminal constraint 1b.  

And the coefficients can be found by looking at the terminal constraints: 

𝐶N =
WNO."P\$OV$07!&0.X

7!&0.
	       ( 2-160 )	

𝐶M =
.&."PWNO."P\&X(&$2O.&)

7!$0.(&$2O&$0)
       ( 2-161 )	

This solution is shown in Figure 2-11A.  
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First Stage Backwards: Growth 

In the next stage, water becomes available before the two adjuncts may meet the 
plant will continue to grow. This is illustrated in Figure 2-11B.  

The exact value of the adjuncts once again does not need to be found and the solution 
can be determined from finding the value of 𝑡,&-" and finding the forward conditions. 

First Stage Forwards: Growth 

This analysis follows the same analysis as Terminal Condition 1a, but finishing at the 
value of 𝑡,&-" instead of 𝑡' (i.e., 𝑀Y(𝑡,&-") needs to be determined).  

Final Stage Forwards: Stress + Growth 

In this stage the stress phase must be adjusted to allow for growth during the stress 
period. The value of (𝑘%) may be removed from the formulas for 𝑟N and 𝑟M: 

𝑟N =
O.&PQ.&0PR.&.!

M
         ( 2-162 )

     

𝑟M =
O.&OQ.&0PR.&.!

M
          ( 2-163 ) 

Further the value of 𝑡,&-" can be found by solving for 𝑊(𝑡,&-") = 0, and the values of 
𝑀Y(𝑡,&-") and 𝑆Y(𝑡,&-") can be substituted into the constants 𝐶N and 𝐶M in place of 𝑀! and 𝑆! 
to get:  

𝐶N = 𝑀Y(𝑡,&-") −
.&#4("5!+%)O$4("5!+%)&2

&2O&0
      ( 2-164 )  

𝐶M =
.&#4("5!+%)O$4("5!+%)&2

&2O&0
        ( 2-165 ) 

These can be used in equations 2-126 and 2-127 for 𝑀(𝑡) and 𝑆(𝑡) respectively and 
Equation 2-148 for 𝑊(𝑡). 

The solution to the problem can be defined as: 

Φ = 𝑘4𝑀YYY(𝑇)         ( 2-166 ) 

The progress of the state trajectory can be found in Figure 2-11C-D. 

Final Remarks 

This solution is a boundary solution, meaning that it can be obtained for specific 
parameters only. It can be found by looking at conditions under which 𝑆( = 0 and 𝑊(𝑡,&-") =
0 for the above forward solution. As such, this solution is not fully considered in the analysis 
in the chapter. 
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2.6.2.3 Terminal Condition 2a 

This condition is impossible to achieve. If storage is reduced to zero at the end of the 
simulation the implication is that storage must be decreasing in the final stage. However, with 
no loss to growth and photosynthesis still active (water is available throughout the entire 
period) under constraint 2-49 storage change becomes: 𝑆̇ = (𝑘% − 𝑘&)𝑀>0 which is positive 
and leads to a contradiction.  
2.6.2.4 Terminal Condition 2b 

In this condition only one stage is present: growth. It is another case of a boundary solution 
only present under specific parameters and can be found by solving Stage I of terminal 
condition 1a with the conditions of 𝑡' = 𝑇 and 𝑆( = 0. Figure 2-12 illustrates this solution.  

 

Figure 2-12 Approximate shape of the solution for the terminal constraint 2b. 

2.6.2.5 Terminal Condition 3a 

This solution is equivalent to terminal condition 1b and can be found by removing the 
Lagrange multiplier 𝜈 from the solution of terminal condition 1b.  
2.6.2.6 Terminal Condition 3b 

This condition is equivalent to terminal condition 1a (three stages: growth-storage-stress) and 
can be found by removing the Lagrange multiplier 𝜈 from the solution of terminal condition 
1a. Note that it is also possible for 𝑡' = 0 under some conditions leading to two-phases being 
observed (storage-stress).  
2.6.2.7 Terminal Condition 4a 

This solution has only one observed phase: growth equivalent to stage 1 in terminal 
condition 1b. 
2.6.2.8 Terminal Condition 4b 

This solution has 2 observed phases: growth and storage equivalent to stages 1 and 2 in 
terminal condition 1a.  
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2.6.3 Special Case: MaxS (kf = 0) 

The special case MaxS can be found by removing the 𝑘4 from the above analysis. Moreover, 
cases in which 𝑆( = 0  and 𝑘4 > 0.5	can be ignored and thus only solutions 3a and 4a need 
to be accounted for.  

2.6.4 Special Case: MaxM (kf = 1) 

The special case MaxM can be found by substituting 𝑘4 = 1 into the above analysis. 
Moreover, cases in which 𝑘4 < 0.5	and 𝜈 < 2𝑘4 + 1	can be ignored and thus only solutions 
3b and 4b need to be accounted for.  



82 

 

3 Examining the long-term impacts of storage allocation 
strategies in plants under stochastic stress 

Abstract 

With the progression of global climate change, forests will experience more frequent and 

more variable extreme weather, including droughts and heatwaves, leading to potentially 

lethal stress. To mitigate stress, plants store carbon as non-structural carbohydrate 

reserves, which they can access when necessary. However, storing carbon limits the 

immediate benefits of growth, thereby creating a trade-off between growth and storage. In 

this chapter, I investigate the success of alternative growth vs storage strategies in 

stochastic (random) environments under competition. Using a gap model, I explore the 

outcome of competition among tree species differing in carbon storage-related traits:  

carbon utilisation rate (fast-slow spectrum) and switch time between growth and storage 

(risky-safe spectrum), in environments differing in stress stochasticity (variance of stress 

duration) and intensity (average stress duration). Four combinations of traits (utilisation 

rate-growth period) were used in the gap model: fast-risky, fast-safe, slow-risky, and slow-

safe. I found that only the slow-safe and fast-safe strategies were still alive after 100 years 

when stress was present. When stress was absent, plants with the fast-risky and slow-risky 

strategies were dominant. Increasing the stochasticity and intensity of stress resulted in 

community dominance shifting from the slow-risky to the slow-safe strategy, with changes 

in stress stochasticity having a larger effect than changes in stress intensity. Mortality due to 

the depletion of carbon reserves was the major driver of the shift in community 

composition. Species with a faster carbon utilisation rate had lower carbon storage minima 

and higher mortality risk under competition-induced shading, while species with a later 

switch time (longer growth period) had higher mortality risk during stress events due to 

lower carbon availability during the stress period. These findings suggest that changing 

stress regimes towards increased stress intensity, and increased stress stochasticity, will 

likely impact future community composition, favouring trees with storage-prioritising 

strategies. The approach undertaken here shows that simulation models that consider 
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storage allocation and stochasticity may provide novel insights into the effects of stress on 

forest function and composition. 

3.1 Introduction 

Trees, as long-lived and sessile organisms, can be especially susceptible to environmental 

stress, such as drought, extreme temperatures, and herbivory. As climate changes and 

environmental stresses increase in frequency and severity (IPCC, 2021) there is an increasing 

need to understand how plants cope during stress periods.  

Abiotic stresses such as drought, frost and heatwaves affect plant metabolism, 

reducing carbon uptake via photosynthesis. They can also impact plant structure through 

xylem embolism and/or direct tissue damage (Cailleret et al., 2014; Tyree & Sperry, 1989). 

Senescence may be caused by tissue damage or may be facultative as a form of protection 

(Munné-Bosch & Alegre, 2004). These effects can last beyond the stress period and have 

long-lasting effects on plants that survive, affecting their metabolic performance and future 

growth rates (Ruehr et al., 2019). Moreover, mortality induced by stress can also manifest 

after several years (Dietze, Matthes, et al., 2014; Trugman et al., 2018). In turn, stress-

induced mortality has significant consequences for community composition (Bennett et al., 

2015; Engelbrecht et al., 2007; McMahon et al., 2019) and, therefore, succession (Vieira et 

al., 2021; Walters & Reich, 1996) including local extinction of co-evolved species (Harrison, 

2001).  

Climate change is expected to result in more extreme and frequent droughts (Dai, 

2013), and more extreme temperatures (Bojórquez et al., 2019; Reichstein et al., 2013). The 

resultant increased stress on plants can also increase the risk from herbivores (Huang et al., 

2020) and pathogens (Aguade et al., 2015). Moreover, co-occurring stresses lead to more 

complex and potentially exacerbated effects on plants (Anderegg et al., 2015; Charrier et al., 

2021; Williams et al., 2013). Despite increased scientific studies of plant response to stress, 

the mechanisms enabling plant survival are generally unresolved (Hartmann et al., 2020; 

Sala et al., 2010) . 

Survival during and after stress depends on carbon availability. Uptake of carbon via 

photosynthesis is limited during stress periods (Muller et al., 2011) and may also be limited 
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following stress because of stress-induced damage to photosynthetic structures (Carnicer et 

al., 2011; Schwalm et al., 2017). Recovery requires investment into new structures and it 

can require several months (MacAllister et al., 2019; Ruehr et al., 2019) to several years 

(Huang et al., 2018) for metabolic activity and growth rates to return to pre-stress levels. 

Thus, storing carbon in the form of non-structural carbohydrates (NSC) is an essential 

strategy for plants that allows them to access carbon substrates during periods when carbon 

assimilation is limited (Adams, Germino, et al., 2013; Tixier et al., 2019; Wiley, 2020).  

Stored NSC, often as starch, can be converted into soluble sugars and readily 

mobilised (Chapin et al., 1990) to ameliorate the potential effects of environmental stress 

and help with post-stress recovery (Tomasella et al., 2019). One theory is that plants have 

adapted to optimise their long-term survival in uncertain environments through storing 

carbon (Wiley & Helliker, 2012). However, storing carbon reduces investment of carbon in 

growth, including leaf area which contributes to higher whole-plant photosynthetic capacity 

(Poorter & Kitajima, 2007; Silpi et al., 2007), thereby constituting a trade-off between 

growth and storage carbon allocation (Atkinson et al., 2014; Hinman & Fridley, 2018). The 

success of different allocation strategies (storage vs growth) may be affected by competition 

with other species. If a plant is growing alone, the optimal strategy may be to delay growth 

in favour of storing carbon for defence against biotic attack or alleviating abiotic stress. In 

contrast, a slow-growing plant in a competitive environment may be shaded out by a faster-

growing neighbouring tree. In order to outcompete its neighbours, and gain more resources 

by growing taller, a plant may exhibit faster growth at the cost of lower carbon stores and 

higher vulnerability to mortality (Atkinson et al., 2014; Myers & Kitajima, 2007). Some 

studies find that larger trees are more susceptible to stress mortality due to increased 

hydraulic and metabolic demand (Rose et al., 2009; Rowland et al., 2015; Trugman et al., 

2018). However, higher growth rates may also increase the speed of recovery (Myers & 

Kitajima, 2007) and support larger resource uptake rates which in turn can lead to larger 

carbon stores.  

Strategies for NSC storage allocation and mobilisation in plants vary among species 

and environments (see Martínez-Vilalta et al., 2016 for an overview of some of the 

differences). Different species’ strategies can manifest in the size of the carbon pool (slow-
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growing seedlings can have larger NSC stores compared to fast-growing ones; Myers and 

Kitajima 2007; Duan et al. 2019), minimum NSC values (Martínez-Vilalta et al., 2016), 

allocation between different organs (Bazot et al., 2013; Tixier et al., 2020) and seasonal 

amplitude (Hoch et al., 2003; Tixier et al., 2020). In addition to differences among species, 

plants can also display intraspecific variability in relation to climate (Ahrens et al., 2020, 

2021) dependent on the dryness of the site or individual provenance (Bachofen et al., 2018; 

Hao et al., 2021). Thus, plants vary in the mechanisms – or ‘strategies’ - that they use for 

accumulation and mobilisation of NSC.  

It has been suggested (Wiley & Helliker, 2012) that the allocation strategy adopted is 

a consequence of a plant seeking to optimise its survival likelihood versus growth. 

Optimisation models have been used to explore the storage strategies of plants in different 

conditions. However, the optimisation target in these models differs. Some models optimise 

storage in the short-term (instantaneously, or on a daily timescale). For example, Trugman 

et al. (2018) took the approach of maximising the Net Primary Production (NPP) during 

recovery from drought by balancing the rate of C allocation to storage as a function of the 

size of xylem, roots and shoots against the phloem loading rate. However, they found that 

this strategy, while optimal in the short-term, could lead to delayed mortality if the 

predicted recovery was too fast to be supported by the plant’s current structure. It is more 

common for optimisation approaches to consider storage over a prolonged time-scale due 

to the asynchronicity between its use, and the cost and benefits incurred by storage 

(Hartmann & Trumbore, 2016).  

Longer-term optimisation can be achieved by using dynamic allocation models, 

which identify a trajectory of carbon storage allocation or utilisation that maximises some 

fitness goal, commonly taken to be reproduction. Several models, which considered 

perennial plants maximising their reproductive output over several years punctuated by 

stress periods, have found that the optimal growth schedule typically follows a three-phase 

pattern within a single year: a period of growth (at maximum growth-rate), followed by 

storage or reproductive output (growth fully ceased), and finally the stress period (Iwasa & 

Cohen, 1989; Kozłowski & Uchmanski, 1987; Kozłowski & Wiegert, 1987; Pugliese & 

Kozlowski, 1990). Due to the shape of the response (the allocation parameter assuming the 
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value of either the lower or upper constraint), this pattern is also referred to as bang-bang 

dynamics (Johansson et al., 2018; Koshkin et al., 2021). Alternative goal formulations such as 

maximising storage or growth under a stress period of limited resources result in similar 

optimal allocation patterns (see Chapter 2, p 37). For annual plants maximising 

reproduction, the dynamic optimisation approach predicted a similar bang-bang dynamic to 

three carbon pools: vegetative, storing and reproductive carbon pools (Chiariello & 

Roughgarden, 1984). The solution determined several possible pathways for optimal C 

allocation which followed the general pattern of growth, followed by storage (under specific 

initial conditions), followed by reproductive allocation from current photosynthesis, and, 

finally, current reproductive allocation from both photosynthesis and stores. When the 

model was parameterised and tested against data using two ecotypes of Hemizonia 

luzulifolia, phenological data, including flowering time, for one of the ecotypes aligned with 

the predicted optimal time-course (Chiariello & Roughgarden, 1984).  

However, there are several limitations to using optimisation models to explore NSC 

allocation. Firstly, it is unclear which optimisation target to use as a proxy for fitness 

(Franklin et al., 2012). Optimisation models that allocate carbon to storage may use a range 

of different targets, primarily reproduction (Iwasa, 2000; Iwasa & Cohen, 1989; Iwasa & 

Kubo, 1997) but also biomass size or storage size (Chapter 2). While some optimisation 

targets may agree and complement each other on varying spatial and time scales (Dewar et 

al., 2009), the use of different targets can also lead to differing conclusions (Chapter 2). 

Secondly, environmental stochasticity is difficult, though not impossible, to incorporate in 

an optimisation model. Stochastic dynamic programming has been used to evaluate 

allocation schedules under stochastic environment (Iwasa, 1991) and optimal storage size 

for recovery from disturbance (Iwasa & Kubo, 1997). However, the analytical approach 

taken in these studies relies on the use of “normal” variability of the stochastic events, an 

approach which fails to acknowledge predicted extremes in climate variability (Ghil et al., 

2011). Finally, when dynamic optimisation approaches consider competition it is most often 

in the form of implicit intra-specific competition, which does not allow for the competition 

between several strategies (e.g., Koshkin et al., 2021). 
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An alternative approach to identifying the fittest strategies in a given environment is 

to explicitly simulate competitive interactions between individuals with different strategies 

in stochastic environments using gap models. Gap models simulate interspecific population 

dynamics within a patch of forest (Bugmann, 2001). Individuals are modelled explicitly and 

competition for resources, often light, limits growth and survival of smaller individuals. Gap 

model simulations can capture a significant breadth of plant behaviour and relevant 

feedback mechanisms, while community dynamics become an emergent property which can 

be further examined. Crucially, gap models focus on long-term rather than short-term 

community dynamics allowing for the examination of the successional status, that is success 

in differently aged ecosystems, of a species in a given environmental regime (Morin et al., 

2021; Norby et al., 2001). For example, JABOWA (Botkin et al., 1972), the first such model to 

examine mixed-age and mixed-species dynamics, reproduced climate-dependent species 

coexistence and dynamics in several New Hampshire forest plots. As their development 

progressed, gap models have shown success in their ability to reproduce behaviour of 

different tree genera and environments. For example, the BRIND model (Shugart & Noble, 

1981), successfully reproduced forest structure of a high-elevation eucalyptus forest subject 

to fire risk. More recently, trait-, size-, and patch-structured models (TSPMs) have expanded 

on the functionality of gap models to focus on trait dynamics (Falster et al., 2011). In 

contrast to reproducing observations of real forests, the original model developed by Falster 

et al. (2011) has examined the response and sensitivity of community composition to 

variations in individual-level functional traits. Since then, the TSPM modelling approach has 

been made available as a package (plant, Falster et al., 2016) making both the traditional 

gap model functionality and TSPM functionality more accessible.  

In this chapter, I expand the existing model, plant, introduced by Falster et al. (2016) 

to examine the growth-storage trade-off under competition and environmental 

stochasticity. The goal of this work is to understand long-term fitness of different 

growth/storage allocation strategies in different environments. Use of a gap model allows 

the exploration of the impact of competition on the growth-storage trade-off and avoids the 

need to specify a particular proxy to represent fitness. In order to describe the spectrum of 

growth / storage allocation strategies, I examine two key parameters: 1) the switch time, 
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between growing and storing, which emerged from the optimisation models in Chapter 2; 

and 2) the rate of carbon utilisation (from storage compartment) in growth as a reflection of 

the plant growth rate (Eller et al., 2018). By considering four combinations of these two 

traits, this work investigates a more complex growth-storage trade-off spectrum than in 

Chapter 2. 

In this chapter, environmental stress is characterised as an annual period during which 

photosynthesis is zero. Stress intensity is represented by the average duration of the stress 

period, and stochasticity is represented by the variability of that duration. 

The objective is to address the following questions: 

A. The baseline question: How does introducing stress and NSC storage to the model 

affect the success of species with different allocation strategies, as compared to a 

simulation with no stress and no storage-related mortality?  

B. How does the stochasticity and intensity of stress affect the success of different 

strategies, and how does it change community dominance? 

C. If species dominance is altered in (A) or (B), what are the primary drivers of such a 

change? 

In this modelling study, I first explore the impact of stress (objective A) in the model. 

The yield will be lower in stressed environments, due to the decrease in total carbon gain 

from lower photosynthetic activity, but the proportional reduction in yield could be smaller 

or larger than the reduction in photosynthetic period. If increased stress promotes overall 

higher competition or mortality of individuals, the decrease in yield may be larger than the 

direct decrease due to annual stress limitation on carbon uptake. Alternatively, the decrease 

in yield may be smaller than the direct decrease if stress decreases competition between 

species by promoting long-lived individuals which can survive in more stressful 

environments. 

I then explore the dominance of species in control vs stressed environments. I expect 

that growth-prioritising trees will be dominant in the control environment (no stress), but it 

is unclear whether dominance shifts to storage-prioritising trees in the stressed 

environment.  
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I then explore how stress stochasticity and intensity (objective B) affects the 

community composition. A priori, I expect that increasing stochasticity might increase the 

presence of the ‘conservative’ species and increase species diversity by allowing for a buffer 

of less ‘risky’ species to establish sufficient growth in a competitive environment.  

3.2 Methodology 

3.2.1 Model 

The gap model was implemented in the plant package (Falster et al., 2016). The 

original plant package was developed to simulate the behaviour of plants using trait-based 

plants in a meta-community competing for light in a patch. The package has both 

deterministic and stochastic functionality, the latter of which allows it to be used as a 

traditional gap model. The default strategy for plant growth (FF16) relies on allometric 

scaling for carbon allocation. Plant allows the user to extend the software with their own 

models of plant growth adapting FF16 or using an entirely new strategy. The package has 

several computational advantages: plant uses a combination of the faster language, C++ for 

the model implementation and the slower statistical software R (R Core Team, 2018) to 

interface with the model. Also, plant uses an adaptive time solver, which finds the largest 

time-step capturing the required accuracy of computation, and thus, increases speed, 

robustness, and accuracy in obtaining the model solutions. Prior to using plant, I identified 

errors or limitations in the code (‘bugs’) and re-coded them to provide a greater degree of 

modularisation so that a variety of plant traits – beyond the default plant height - could be 

considered. This was done in co-ordination with the developers and all code was 

contributed back to them. 

To implement the carbon storage allocation scheme, I created a new strategy, called 

ES20, which expands on the FF16 strategy by including a stored carbon pool in the core of 

the carbon allocation model. I also adjusted the remainder of the model to account for the 

effect of stress and storage-based mortality.  

To introduce environmental stress, I created a new environment model, ES20env 

which extends the FF16env model. The model retains the mechanisms of light competition 

among species from FF16env and introduces an annual stress period of stochastically varying 
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length. Each year, the environment is characterised by a period of no stress followed by a 

period of stress. The time of the switch between no-stress and stress each year is derived 

from a normal distribution. The implementation of the model and model runs can be found 

in the following repository: https://github.com/foxeswithdata/plant. 

Below I describe how the model was modified to allow for the abovementioned 

changes. Additional functions that were retained from the original FF16 model are given in 

Appendix 3.6. 

3.2.1.1 Plant strategy 

The overall structure of the carbon pools and flows of the model is shown in Figure 

3-1.  

Photosynthesis and respiration are derived from the FF16 model with new 

functionality introduced for the stress period. The average photosynthesis per leaf area for a 

plant with traits 𝑥, height 𝐻, living in a light environment of 𝐸@ and a stress environment of 

𝐸', at time 𝑡 can be given as: 

𝑝̅G𝑥, 𝐻, 𝐸@ , 𝐸'(𝑡)H = 𝐸'(𝑡) ∫ 𝑝G𝑥, 𝐸@(𝑧)H𝑞(𝑧, 𝐻)d𝑧
]
!     (3-1) 

where, 𝐸'(𝑡) is the experienced stress, 𝑝(𝑥, 𝐸@(𝑧)) is the leaf photosynthesis at 

height z and 𝑞(𝑧, 𝐻) is the leaf area distribution. The experienced stress is a value between 

0 and 1, where 0 is the highest level of stress which fully impedes photosynthesis and 1 is 

unstressed. Likewise, total maintenance respiration, 𝑅, is comprised of respiration rates of 

each component multiplied by the fraction 𝑟=->, which leads to decreased respiration 

during stress: 

𝑅 = c𝑟=-> +
^&(")
M
d∑ 𝑀-𝑟--;_,`,',&       (3-2) 

where 𝑀- 	is the mass of plant component 𝑖 (l = leaf, b = bark, s = sapwood and r = 

fine roots) and 𝑟-  is the specific rate of respiration of that component.  

The model was modified by including a storage pool. The storage utilisation scheme 

assumes that incoming carbon first enters the storage pool before being utilised for growth 

and reproduction (Figure 3-1). This representation is commonly used in optimal allocation 
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models (see this thesis’ Chapter 2; Chiariello & Roughgarden, 1984; Iwasa & Cohen, 1989; 

Iwasa & Levin, 1995) and in some mechanistic models (e.g., Jones et al., 2020; Mahmud et 

al., 2018). Models differ, however, in how they represent the use of stored carbon. Here, we 

use an active storage utilisation scheme which is controlled by two traits: the switch time 

from growth to storage, 𝑡', and the storage utilisation parameter, 𝛼'.  

 

Figure 3-1 The carbon allocation scheme used in the model. Net carbon uptake (NCU; Photosynthesis - Respiration) first enters the storage 

pool before being utilised for growth of functional components and reproduction. The input to storage can be either positive or negative, 

depending on whether respiration exceeds photosynthesis. The amount of carbon utilised for growth is controlled by the utilisation strategy 

(red box) which is defined by the two trait parameters (the switch time from growth to storage, 𝑡%, and the storage utilisation parameter, 𝛼%). 

The allocation of growth among foliage, sapwood, bark, and root is controlled by allometric relationships with height and leaf area. Loss to 

turnover is kept at constant rates throughout the years. Litter carbon from foliage, bark, and root is lost from the plant, while the carbon 

from sapwood turnover is converted to heartwood. Reproduction is included in the model at a nominal amount kept for realism of carbon 

costs but not function. Reproduction only occurs when the utilisation of carbon is positive.  

The rate of NSC utilisation U as controlled by the utilisation strategy (Figure 3-1, red 

box) is given by:  

𝑈 = 6t < 𝑡' ⟹ 𝑎'𝑀'"
t ≥ 𝑡' ⟹ 0          (3-3) 

where t is the time of year, 𝑡' is the switch time parameter, 𝛼' is the storage 

utilisation rate parameter and 𝑀'" is the size of the storage pool. Note that Equation 3-3 

allows for the plant to continue growing in some cases despite being stressed, if 𝑡' is later 

than the onset of stress that year. Equation 3-3 is implemented as a series of logistic step 
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functions to assist with the model-solving (see Appendix 3.7) but is represented as a 

piecewise step function here for simplicity.  

The growth-storage strategy is represented by the two parameters 𝑡' and 𝛼'.  

The switch time parameter, 𝑡', corresponds to the outcome of an optimal carbon 

allocation model which predicts the time-point at which it is optimal to switch from growing 

to storing (Chapter 2; Engen & Saether, 1994; Iwasa & Cohen, 1989; Wenk & Falster, 2015). 

In the optimisation model, the value of 𝑡' is predicted to vary with the plant size and the 

environment and represents the switch to storage after the onset of drought. Here, for each 

strategy, the value of 𝑡' is a fixed time of the year, independent of the drought onset. The 

reason for this is twofold: firstly, to simplify calculation; and secondly, to capture an annual 

C allocation cycle which evolved in response to the occurrence of a predictable annual 

stress. Variation in the onset of stress thus results in yearly fluctuations in stored C and a 

surplus in one year can help a deficit in another year. Moreover, the plant may begin to 

store carbon prior to the onset of stress. In this case, an alternative approach, one in which 

𝑡' is dependent on the onset of stress rather than a fixed time of year, would require an 

assumption about the plant’s ability to predict the onset of stress or a model in which 

storage always occurs following the onset of stress.  

The storage utilisation parameter, 𝛼', is also present in optimisation models but its 

value usually takes on some constant maximum when the plant is growing or 0 when the 

plant is not growing. Here, the value of 𝛼' is varied between different strategies.  

The allometry scheme is based on the FF16 height-based allometry, which is based 

on the Pipe Model Theory (Shinozaki et al., 1964). The scheme assumes a relationship 

between height growth and leaf area and in turn between leaf area and the size of the tree 

needed to support the desired leaf area. The allometric change in height is given by: 

d]
d"
= d]

dJ6
× dJ6

db
× U         (3-4) 

where the change in leaf area with respect to mass (unchanged from the original 

model) is given by: 

dJ6
db
= cd$6

dJ6
+ d$!

dJ6
+ d$&

dJ6
+ d$!

dJ6
d
ON

       (3-5) 
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The size of the component 𝑖 is given by: 

d$+
d"
= d$+

dJ6
× dJ6

db
× 𝑈 − 𝑘-𝑀-        (3-6) 

where 𝑘-  is the turnover rate for component 𝑖. The introduction of stress would 

cause a loss of the allometric balance between components because U is zero during 

storage periods and the size of a component 𝑖 can decrease. To address this issue, the 

change in size of component 𝑖 was made dependent on a calibration factor 𝑐-:  

d$+
dJ6

= 𝑐-(𝐻, 𝐴_ , 𝑀-)
d$+
dJ6

C
         (3-7) 

where d$+
dJ6

C
 is the original allometric function from Falster et al. 2016 (supplementary 

table) and the calibration factor is given by: 

𝑐-(𝐻, 𝐴_ , 𝑀-) =
M

NPcde	(O,7($+
8(],J6)O$+)

      (3-8) 

𝑐. is the calibration rate parameter, 𝑀-′(𝐻, 𝐴_) is the allometrically correct pool size 

for a plant of height 𝐻 and leaf area 𝐴_  and 𝑀-  is the actual pool size. If the calibration is 

correct the growth rate stays constant (𝑐- = 1); if it is too small for the current size of the 

plant the growth to that part is prioritised to aid with recovery (up to double the usual 

speed of growth), and if the component is too big, growth is slowed down for the benefit of 

other components. 𝑐. controls the speed of the prioritisation with a higher value leading to 

a larger increase in priority and faster calibration, and a low value leading to slow calibration 

and longer periods of adjustment. Height allometry is adjusted in the same way as pool 

biomass (Table 3-5). 

Finally, carbon is also lost from storage to reproduction df
d"

 (Table 3-5) which only 

occurs during plant growth (when 𝑈 > 0). 

The total change in storage is therefore:  

d$&%
d"

= B − U − df
d"

         (3-9) 

where 𝐵 is the net carbon uptake (NCU), given by: 

B = 𝛼`-B𝛼g(𝐴_𝑝̅ − R)         (3-10) 
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with 𝛼`-B being the conversion factor from mol C to kg biomass, and 𝛼g a factor that 

accounts for efficiency losses due to conversion of carbon into storage and growth 

respiration.  

Mortality is controlled by three factors that work in tandem: (1) a constant, 

independent mortality rate (𝑑Y) which represents the random chance of death due to events 

unaccounted for in the model (retained from original model); (2) productivity-dependent 

mortality (𝑑h) which represents the effect of light stress (adjusted to account for 

environmental stress); and (3) storage-dependent mortality (𝑑#) which represents the effect 

of low NSC reserves (newly introduced). The mortality rate, which is afterwards used to 

compute the probability, is given by: 

𝑑(𝑥, 𝐻,𝑀'" , 𝐸@ , 𝐸', 𝑡) 	= 	𝑑Y 	+ 	𝑑h(𝑥, 𝐻, 𝐸@ , 𝐸', 𝑡) 	+ 	𝑑#(𝑥,𝑀'")    (3-11) 

𝑑h is given by: 

𝑑h(𝑥, 𝐻, 𝐸@ , 𝐸', 𝑡) = 𝐸'(𝑡)𝛼GhNexp	(−𝛼GhM𝑋)     (3-12) 

where 𝑋 = 𝐵/𝐴_, that is the net carbon uptake per unit leaf area. When the plants 

are stressed (𝐸'(𝑡) = 0) photosynthesis goes to zero and 𝐵 becomes negative. To avoid all 

plants dying during this period, the productivity-dependent mortality is multiplied by the 

stress factor 𝐸'. 𝛼GhN and 𝛼GhM control the mortality function and can be adjusted for 

individual strategies.  

The storage-dependent mortality follows the same structure, with the mortality rate 

decreasing as the storage concentration increases: 

𝑑#(𝑥, 𝐻,𝑀'") = 𝛼G#Nexp	(−𝛼G#M𝑋)        (3-13) 

where 𝑋 = 𝑀'"/𝑀@ is the storage concentration in live biomass, 𝑀@ = 𝑀_ +𝑀' +

𝑀` +𝑀&. 𝛼G#N and 𝛼G#M control the shape of the mortality function and can be adjusted for 

individual strategies.  

Given that the number of trees is Gi
G"
= −𝑑(𝑡)𝑁 such that the number of surviving 

trees is 𝑁(𝑡) = 	𝑁!𝑒O∫ G(k)Gk%
3 ,	the probability of mortality, 𝑝l at time 𝑡, in model is then 

given by:	

𝑝l(𝑡) = 1 − exp(−𝑘	𝑑 (𝑥, 𝐻,𝑀'" , 𝐸@ , 𝐸', 𝑡))      (3-14) 
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where 𝑘 is a constant. Full details of the deterministic model derivation are given in 

Falster et al. (2016). 

Germination is dependent on the potential productivity of the new plant (Falster et al. 

2016). The process has been adjusted to account for stress with germination halting 

throughout the stress period and introducing an initial storage pool.  

New plants arrive at the patch with height 𝐻!, correct allometry scaling of the strategy 

for live biomass (𝑀@!(𝐻!)) and a storage pool of size 𝑀'"!: 

𝑀'"! 	= 𝛽'	𝑀@!(𝐻!)          (3-15) 

where 𝛽' is the initial storage concentration for a new plant. 

3.2.1.2 Environment 

The model remains unchanged with regards to the light environment (based on the 

solar regime experienced in Sydney: Falster et al. 2011) and changes are only made to 

introduce environmental stress. For simplicity, there is no temperature response, and the 

light environment is assumed to be constant when no environmental stress is present. 

Outside of the annual stress period, the only factor affecting individual tree photosynthesis 

is light competition within the patch, which is based on the tree’s height. The model 

assumes a uniform horizontal leaf area distribution with all the leaves at height z equally 

shaded (Bugmann, 2001) but leaf area is distributed vertically. Because patches are kept 

small to allow for computational performance, this scheme is deemed adequate for the 

model. For bigger patches, however, a crown projection area implementation that includes 

spatially heterogeneous interaction would be more appropriate (Lexer & Hönninger, 2001). 

When the plant is stressed by the environment, photosynthesis, germination and 

productivity-driven mortality are all halted, and respiration is reduced.  

This is achieved by introducing the stress factor 𝐸'(𝑡) which is used to adjust plant 

functionality in response to the environment: 

𝐸'(𝑡) = 6𝑡 < 𝑡,&-" ⟹ 1
𝑡 ≥ 𝑡,&-" ⟹ 0         (3-16) 

where 𝑡 is the time of the year (between 0 and 1), and 𝑡,&-" is the onset of stress in 

that year.  
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The annual time of stress onset 𝑡,&-" is stochastic in the model.  

The generation of the 𝑡,&-" value for each environment is controlled by a normal 

distribution function 𝒩'(𝜇, 𝜎M) (see Figure 3-2). The smaller the 𝑡,&-" for a given year, the 

longer the stress. The mean of the distribution can be used to increase or decrease the 

intensity of the stress and the standard deviation value to change the stress stochasticity, 

with a higher value increasing the likelihood of extremes. A 𝑡,&-" value that is larger than 1 

indicates a lack of stress in that year.  

 

Figure 3-2 The probability density function of for two potential environments: low-stress medium-stochasticity and medium-stress low-

stochasticity. The medium stress with low stochasticity (green) is given by a normal distribution: 𝒩%/(𝜇 = 91.25𝑑, (15𝑑)0) and the low stress 

with medium stochasticity (yellow) is given by the normal distribution: 𝒩%0(𝜇 = 54.75𝑑, (30𝑑)0). Duration of stress is calculated as (length 

of year – onset of stress) and units are converted to days as opposed to years to facilitate interpretation. Values that fall at or below 0 are 

counted as years of no stress. Although the low stress environment has generally shorter stress periods than the medium stress environment, 

there is a marginally higher likelihood in that environment to encounter years of extreme stress (described as more than 150 days of stress) 

but likely interspersed with years light and very light stress (< 75 days). In contrast the environment with the medium average stress is less 

likely to encounter very heavy stress but more likely to encounter heavy stress (105-150 days) with higher likelihood of concurrent years 

with heavy stress. 
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duration of 91.25 and 54.75 days (corresponding to the average 𝑡,&-" values of 0.85 y and 

0.75 y used in model simulations). Any simulations where the storage became negative 

were excluded from the simulation. 

The switch time, 𝑡', can be varied to either maximise storage (MaxS) or maximise 

biomass (MaxM) (Chapter 2, p 37). Here I varied 𝑡' from 0 to 0.75 y to find the values such 

that the total live biomass or storage carbon pool was maximised at the end of the year 

(Figure 3-3). The storage translocation parameter, 𝛼', was varied from 0.1 to 0.4 kgC kgC-1 

d-1 and the relative growth rate of height and storage concentration were plotted for a 

range of parameter values and initial plant sizes (Figure 3-4).  

From these simulations, two values for each parameter were chosen for a total of 

four contrasting allocation strategies. The strategies were named as follows: the “Risky - 

Safe” spectrum represents the switch time, 𝑡', varying from high to low; and the “Fast – 

Slow” spectrum represents the storage utilisation rate, 𝛼' varying from high to low. The four 

strategies are therefore:  

• Fast-Risky (𝑡& = 0.5	y, 𝛼& = 0.3	kg	C	kg 1C	d 1) 

• Fast-Safe (𝑡& = 0.25	y, 𝛼& = 0.3	kg	C	kg 1C	d 1) 

• Slow-Risky (𝑡& = 0.5	y, 𝛼& = 0.1	kg	C	kg 1C	d 1) and  

• Slow-Safe (𝑡& = 0.25	y, 𝛼& = 0.1	kg	C	kg 1C	d 1).  
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Figure 3-3 Sensitivity analysis of a simulated individual to the switch time parameter 𝑡% for a range of initial plant heights (y-axis) and storage 

mass proportions (x-axis) and three values of 𝛼%. The colours indicate the value of 𝑡% that maximises the live mass of the plant at the end of 

the year (A) or the storage mass at the end of the year (B).  
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Figure 3-4 Sensitivity of growth of an individual plant for one year to the storage utilisation rate parameter (x-axis) for different environmental 

stress treatments (columns), time switch parameters (rows), and initial heights (colours). Dashed lines indicate the two values chosen as 

parameters. Panel A shows the relative increase in height and Panel B shows the relative change in carbon storage concentration. 

To test the effect of these strategies on growth in the absence of competition, a 

single plant of each strategy was simulated for a 100-year period in an environment with no 

light competition and for the three average stress durations used in the model (Figure 3-5): 

no stress, 54.75 days and 91.25 days. Both the strategy and the duration of stress affected 

the final size of an individual. The Risky-Safe spectrum has a much larger effect on the final 

plant size than the Fast-Slow spectrum. The reasons for these impacts can be seen by 

zooming in on one year (Figure 3-6). The later switch time (longer growth duration) of Risky 

strategies contributes more to growth than the storage utilisation rate 𝛼' (Figure 3-6A). The 

significant difference in the plants of the Fast-Slow strategy spectrum comes during the 

recovery period when height growth is halted in favour of recovering allometric balance in 

the plant: the Fast strategy allows plants to recover their growth faster than those with the 
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Slow strategy. The trade-off is that the Fast strategy also results in a smaller annual 

minimum of the NSC pool and, therefore, a higher potential for mortality during those 

periods (Figure 3-6B).   

 

Figure 3-5 Trajectory of plant height for a single plant using each allocation trajectory and growing without competition under different 

deterministic stress regimes over a 100 year period. Each box represents a different stress regime: medium stress (left, 0.75 of the year is 

photosynthetically active), low stress (middle, 0.85 of the year is photosynthetically active) and no stress (right, plants can photosynthesise 

for the entire year). Each colour represents a different allocation strategy: slow-risky (yellow), slow-safe (green), fast-risky (red) and fast-safe 

(pink) with Risky strategies outcompeting the Safe ones and the Fast-Risky reaching the tallest heights and Slow-Safe being the shortest of 

the individuals. The trajectory of plant height is similar for all strategies with plants reaching a plateau after a period of relatively fast growth. 

This plateau increases with number of photosynthetically active years. Differences between the strategies also become more pronounced 

with a decrease in stress.    
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Figure 3-6 Illustration of variability in intra-annual height growth (A) and storage concentration (B) between strategies for a sample year. 

Strategies are represented by different colours: slow-risky (yellow), slow-safe (green), fast-risky (red) and fast-safe (pink). A: Initial lack of 

growth (the recovery period) is due to loss of allometric scaling over the previous stress season which leads to lack of vertical growth at the 

beginning of the year while missing pools are replenished. The Safe strategies have a shorter recovery period with a Fast translocation rate 

leading to marginally faster recovery period as opposed to Slow translocation rate strategies. The likely larger carbon pools of safe strategies 

lead to faster initial growth before achieving a constant rate, whereas Risky plants maintain a relatively stable growth rate for their entire 

height growth period. Most differences between strategies can be attributed to the difference between the switch time, that is to the Safe-

Risky strategy spectrum. B: Due to a shorter growing period Safe plants exhibit a larger concentration of carbon as opposed to Risky plants 

and therefore a larger maximum at the start of the stress period. The minimum of storage concentration is governed by the differences 

between translocation rates, 𝛼% rather than the switch time leading to a higher minimum of storage concentration for Slow strategies. The 

highest drawdown of carbon from storage can be attributed to growth rather than maintenance expenditure during the stress period. 

The four strategies affecting the Growth-Storage trade-offs are illustrated in Figure 3-

7. 
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Figure 3-7 Storage-Growth Trade-offs as represented by the four strategies. Graphs illustrate the rough shape of intra-annual height growth. 

The largest differences are represented by the switch time through the parameter 𝑡%, with shorter growth (smaller 𝑡% values) representing a 

storage-prioritising plant and longer growth (larger 𝑡% values) representing a growth-prioritising plant. For each growth-duration category a 

further distinction can be made by looking at storage translocation rates 𝑎% with slower rates being on the storage priority end of the 

spectrum and faster rates on the growth priority end. 

3.2.3 Simulations 

With the four strategies defined, the model was run repeatedly for 100 years with all 

strategies present to investigate outcome of competition. An adaptive time-step was used 

with a range of 10-6 to 10-1y. The environment treatments varied between stress intensity 

and stress stochasticity.  

The environmental stress was varied for each run as follows. A total of 8 

environment treatments were chosen, with two average stress intensities crossed with four 

levels of stochasticity from no stochasticity to high stochasticity. For each environment 

treatment, five random stress sequences were generated from the probability distribution 

defining that treatment (only one for the treatments with no stress stochasticity). The 
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simulation was pre-processed to remove trees with a diameter smaller than 5cm. This was 

done due to the large number of small trees which did not survive the first few days of 

analysis and to maturity but were still present in the data resulting in a more 

computationally feasible analysis. Time series outputs were averaged using a rolling average 

for observation and a time-series of 20 y < t < 100 y was examined for indicators of 

relationships between strategy successional status.  

To analyse final outcomes, basal area values in the last 10 years of the simulation (90 

y < t < 100 y) were averaged for each run. Treatment means and standard deviations were 

then calculated. To analyse the effect of environmental stress on the final yield, a linear 

regression, accounting for individual strategies and treatment, was performed. To assist 

with interpretation of those results, an omega squared, 𝜔M, value was used to calculate the 

effect size based on the comparison between proportions of variance of predicting variables 

(LeCroy & Krysik, 2007) which was interpreted using measures described in (Field, 2013). 

Both operations were done using the R package effectsize (Ben-Shachar et al., 2020).  

The differences between the repetitions of the ‘stress treatment’ and the ‘stress 

sequence’ did not need to be considered as any effect would be negligible.  

All the result analysis can be found in the following repository: 

https://github.com/foxeswithdata/storage plant simulation analysis, kept separate from 

the simulation model code to assist with modularity.  

3.3 Results 

3.3.1 Effect of stress on final basal area   

In each environment, only two of the four strategies are viable. In the control simulation, 

where there is no stress and no mortality associated with low carbohydrate storage, the 

Fast-Risky and Slow-Risky strategies outcompeted both Safe strategies, as a result of the 

longer growing period of the Risky strategies (Figure 3-8). Once stress is introduced, only the 

Slow approaches are viable, indicating there is an advantage to lowering the rate of storage 

utilisation, 𝛼#.  

The Fast-Safe strategy fails in all environments. Under the no-stress scenario, the 

benefit of the faster utilisation rate is outweighed by the earlier switch time (shorter growth 



109 

 

duration), and the strategy is outcompeted by Risky strategies. When stress is introduced, 

the faster utilisation rate creates a higher mortality risk early in the season. The plants are 

outcompeted by both the Slow-Risky strategy plants, which can grow faster and shade 

them, and the Slow-Safe strategy which has a larger buffer against stress.  

Introducing stress and storage-related mortality into the simulations reduces final 

basal area by between 30% and 50% (Figure 3-8) which is larger than the 15% and 25% 

reduction in photosynthetic days. However, the maximum height that an individual plant 

reaches decreases proportionally with the number of photosynthetic days (Figure 3-5). If the 

reduction in basal area was caused only by the decreased photosynthetic period, the basal 

area reduction between control and stress treatments would likely be comparable to that of 

a decrease in individual plant size. However, the basal area reduction in a patch between 

stressed and unstressed treatments (Figure 3-8) is close to twice the reduction in the size of 

a single individual due to stress (Figure 3-5). Therefore, the effect of introducing stress and 

competitive interaction must play a role beyond loss of photosynthetic uptake. The 
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processes contributing to this decline are further examined in Sections 3.3.3 and 3.3.4.

 

Figure 3-8 Final yield as determined by the basal area averaged first across each time point in years 90-100 of data and then by 

environmental repetition (N = 4 in control treatments with no stochasticity and N = 20 in treatments with stochasticity > 0). Error bars 

represent the standard deviation across environmental repetitions. Rows represent strategies with the first row combining all strategies 

across the plot. Shading represents the stochasticity of the environment with the darkest colours representing environments with no 

stochasticity and lightest colours showing environments with the highest stochasticity.  
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3.3.2 Environment treatment effect on final basal area  

Table 3-3 and Figure 3-9A show that stress stochasticity affects the competitive dominance. 

As stochasticity increases, there is a decreasing basal area of the Slow-Risky strategy (“large 

effect” in Table 3-3) and an increasing basal area of the Slow-Safe strategy (“medium 

effect”). Plants using the Fast strategy are uncompetitive and exhibit no or a small change in 

basal area.  

In contrast, the average stress duration does not have a consistent effect on 

competitive outcome (Table 3-4, Figure 3-9B). The basal area of the Slow-Safe strategy is 

increased with increasing stress duration (“small effect” for all levels of stochasticity and low 

stochasticity and “medium effect” for medium stochasticity in Table 3-4) but this trend is 

reversed when plants are subjected to high stochasticity. With medium stress and high 

stochasticity, there can be years with extreme environmental stress that can significantly 

inhibit all strategies. There is a small decrease in basal area of Slow-Risky plants with 

increasing stress, with mostly a “very small” effect. However, this decrease may be enough 

for the Slow-Safe strategy to become more successful, thereby increasing its overall basal 

area. The effect may also be affected by the response at high stochasticity when both Slow-

Risky and Slow-Safe decrease in basal area which is likely caused by increased mortality due 

to an increased number of high and very high stress years.  

 

 









115 

 

 

Figure 3-10 Height distribution of individuals over 100 years on a 100 m2 patch. Each panel shows one allocation strategy in the population 

((a) slow-risky, (b): slow-safe, (c): fast-risky and (d): fast-safe). Pale lines show individual trees; darker lines of each colour show the average 

for all individuals of that species; dark blue line shows average height for the entire population. The rug on each figure shows the duration of 

the stress in a given year (green for very low stress intensity <30d, blue for low (30 to 75d), yellow for medium (75 to 105d) and red for high 

(105 to 150d)). Periods of no height increase in an individual can be explained by an allometric mismatch after the period of stress. During 

the recovery period, growth is prioritised in the plant components that are most imbalanced until allometric relationships are regained.  
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Figure 3-11 Total Net Carbon Uptake (NCU) summed across all individuals in a patch of a given strategy across a 100-year time scale on a 

100m2 patch. Dark blue line shows the sum of NCU for the entire population regardless of strategy. The rug on each figure shows the 

intensity of the stress in a given year as described by the length of the stress (green for very low stress intensity <30d, blue for low (30 to 

75d), yellow for medium (75 to 105d) and red for high (105 to 150d)). Periods of no height increase in an individual can be explained by an 

allometric mismatch: since plants don’t grow for a proportion of the year growth is prioritised in those components that are most imbalanced 

until balance can be regained. 

The dominance of the Slow strategy species is visible in the height (Figure 3-10) and 

productivity (Figure 3-11) of the individual plants and in the number of individual plants 

(Figure 3-12). Apart from the higher densities during stand establishment in the initial 20 

years, the Slow strategies reach a maximum of 26 (for the Slow-Risky) and 31 (for the Slow-

Safe) individuals per patch, with an average of 14.0 (Slow-Risky) and 23.6 (Slow-Safe) 

individuals being simultaneously present on the patch. When compared to the Fast 

strategies, which reach a maximum of only 10 (Fast-Risky) and 14 (Fast-Safe) individuals and 

an average of 3.4 (Fast-Risky) and 3.9 (Fast-Safe) individuals, I conclude that the Slow 

strategies are more successful in competition than Fast strategies. There is a small number 

of individuals that reach the sapling stage (diameter at breast height, DBH > 5cm). In 

addition, the low average height of Fast strategies indicates there is a low survival rate for 

trees that do reach the sapling stage.  
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Figure 3-12 Number of individuals of each strategy living on the 100 m2 patch over time. The rug shows the intensity of the stress in a given 

year as described by the length of the stress (green for very low stress intensity <30d, blue for low (30 to 75d), yellow for medium (75 to 

105d) and red for high (105 to 150d)). 

Tree mortality in the model occurs when storage is low (storage-dependent 

mortality, Equation 3-13), such as when a plant is subjected to a prolonged stress, or when 

net mass production per leaf area is low (productivity-dependent mortality, Equation 3-12); 

e.g., when a plant is shaded. In the initial 20 years of the simulation, there is little shading 

and, therefore, all plants grow at their intrinsic growth rates. In those initial years, the Slow-

Safe strategy performs the worst because it has the lowest intrinsic growth rate. 

Subsequently, however, there is a decline of the Fast strategies, especially the Fast-Risky 

strategy plants. Two factors are likely influential in this decline. First, during long stress 

periods, the plants need stored carbon to survive and recover from the stress. Risky plants 

have lower survival over these periods as evidenced by decreased mean height (Figure 3-10) 

and NCU (Figure 3-11) as well as lower average storage concentrations (Figure 3-13). 

Second, Fast strategies have lower minimum storage concentrations compared to Slow 
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strategies (Figure 3-6 and Figure 3-13) indicating that insufficient productivity under shading 

may be a contributing factor controlling mortality of this strategy. Since most Fast-Safe 

individuals occupy the lower parts of the canopy (Figure 3-10), they may have insufficient 

carbon uptake which, combined with lower carbon store minima, increases the mortality of 

these individuals. Since the Slow-Safe plants survive to reach the top of the canopy despite 

being shaded for much of the initial 100 years, inadequate carbon stores under shade must 

be the ultimate cause of the mortality of the Fast-Safe individuals.   

 
Figure 3-13 Stored carbon concentration in individual plants as a rolling 2-year average. Legend follows Figure 3-10. 

3.3.4 Stress and Mortality  

The stress and shade contributions to mortality can be further examined by looking at 

mortality during stress periods and under canopy shading across all simulated environments 

which include stress.  

During the stress period, productivity-dependent mortality is switched off, and trees 

only die because of storage-dependent mortality. The proportion of deaths during stress can 
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be calculated for each strategy as the number of plants of the strategy which die in a given 

stress period, divided by the total number of plants of that strategy which were alive during 

that period. The proportion of deaths during stress increases with the duration of the stress 

in a logistic relationship (Figure 3-14). While there is noise in the model output due to the 

stochastic nature of the mortality function (Equation 3-14), there is still a visible pattern in 

that the proportion of deaths remains steady until it starts to rapidly increase. For Risky 

strategies, 50% of plant mortality occurs when stress is 165 days (Fast-Risky) and 172 days 

(Slow-Risky), while for the Safe strategies these numbers are 266 days (Fast-Safe) and 299 

days (Slow-Safe), although this pattern is less clear in the Fast-Safe strategy due to the lower 

number of individuals.  

Outside of the stress period, productivity-dependent mortality can occur in addition 

to storage-dependent mortality. The proportion of deaths in the population is shown as a 

function of canopy openness (the percent of light reaching the top of the plant, with 0 being 

total darkness and 1 being full light) in Figure 3-15. Here trees are grouped by canopy 

openness and the proportion of trees in each canopy openness group that die that year is 

calculated. The proportion of deaths has an exponential decay relationship with canopy 

openness (Figure 3-15). The higher the light level, the lower the proportion of deaths, with 

differences driven by the rate of carbon utilisation (Fast-Slow) spectrum. Slow strategy 

plants tolerate shade better than Fast strategy species (showing a faster decline of mortality 

with increased light). The mortality of Fast strategies under shade may be a combination of 

increased productivity-dependent mortality due to inadequate carbon supply and storage-

dependent mortality due to their lower storage concentration minima (Figure 3-6). This 

would agree with the hypothesis that the Fast-Safe strategy cannot survive the shade and, 

therefore, becomes outcompeted by the other strategies.  
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Figure 3-14 Proportion of population dying during a stress period (all simulations), as a function of stress duration. The proportion is 

calculated as the number of deaths of a given strategy divided by the total number of individuals of that strategy alive during the stress 

period, with each point signifying a single simulated year. Deaths outside of the stress period are not considered. A logistic equation is fitted 

to the data and the point of 50% death for each strategy is indicated by the vertical dashed line and indicated in the formula for that fitting 

(not shown for the Slow-Safe and Fast-Safe strategies for which this point is beyond the data observed).  
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Figure 3-15 Relationship between population mortality and light competition for all simulations. The proportion of plant mortality is 

calculated as the number of deaths of plants of a given strategy which live in a given light environment divided by the total number of 

individuals of that strategy alive in that same light environment, with each point signifying a single simulated year. Deaths during the stress 

period are not included because productivity-driven mortality is assumed to be zero during stress. The light environment is represented by 

canopy openness, calculated as the proportion of incident light available at the plant height. Deaths with canopy openness = 1 were removed, 

and an exponential decay function was fitted to each set of data (solid line and equation in each panel).  

3.4 Discussion 

In this work I have explored the long-term impacts of different carbon storage utilisation 

strategies using a gap model, which includes both environmental stochasticity and 

competition between individuals. I simulated the response of a community of trees to 

varying strategies on the growth-storage trade-off spectrum. The trees grew for 100 years in 

environments with and without stress, as well as with and without environmental 

stochasticity. The four strategies varied in two parameters: the speed of carbon utilisation 

(Slow-Fast utilisation spectrum) and length of the growth period determined by the growth-

storage switch point (Safe-Risky spectrum, short to long growth period). The strategies 

differed only in these traits, so the primary factor determining the outcome of competition 
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was differential mortality rates: a long growth period (Risky strategy) reduced the chance of 

survival during a stress period, and a fast carbon utilisation rate (Fast strategy) reduced the 

size of the carbon storage pool, thereby reducing the shade-tolerance of an individual tree. 

In general, the Slow-Safe strategy may benefit a secondary succession species, while the 

Fast-Risky strategy may benefit a pioneer species. Additionally, the Slow-Risky strategy 

allowed trees to survive both as a pioneer species, but also in more stressful environments, 

while the Fast-Risky strategy exposed trees to potential mortality. In contrast, trees in the 

Fast-Safe strategy were not successful in early succession, when they are outcompeted by 

longer growing and therefore taller individuals, nor in secondary succession because they 

were not shade tolerant. A summary of the four strategies and their differences is shown in 

Figure 3-16. 

When seasonal stress was absent from the model, the successful strategies were the 

two Risky strategies. There was no stress-related mortality in the no-stress environment, so 

the primary cause of mortality was productivity-based mortality, which is dependent on the 

degree of shading, rather than on the size of the carbon storage pool. Trees in the Risky 

strategy grew longer and thus outcompeted trees in the Safe strategies by overtopping and 

shading them. The speed of utilisation of carbon had little effect in the no-stress 

environment.  

When stress was introduced, the tree strategy shifted to the Slow-Safe and Slow-

Risky strategies. However, the reason behind the survival of trees in each of the two 

strategies was different. The trees were subjected to both an annual seasonal stress and 

shade stress. Trees in the Slow-Safe strategy could survive extended periods of time in 

shade with limited photosynthesis (Figure 3-10), likely due to higher carbon storage minima 

offsetting the low photosynthetic gain. Once taller trees died due to annual seasonal stress, 

trees in the Slow-Safe strategy could grow to the top of the canopy. On the other hand, the 

Slow-Risky trees were more susceptible during the seasonal stress due to lower carbon 

stores, but could grow rapidly and outcompete other plants for light. As with the Slow-Safe 

strategy, Slow-Risky trees also had a high carbon storage minimum (Figure 3-6), which 

facilitated the survival of small saplings in the shade. The failure of the Fast-Risky strategy 

was strongly associated with stress-related mortality exacerbated by the inability of trees to 
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survive in shade. The Fast-Safe strategy also failed, predominantly due to the lack of shade-

tolerance in trees, which led to mortality before a canopy gap became available.  

 

Figure 3-16 Summary of model outcomes by plant strategy. Storage-dependent mortality differentiates between strategies on the Safe-

Risky spectrum, with Safe strategies being more tolerant of stress conditions. Productivity-dependent mortality differentiates between 

strategies on the Slow-Fast spectrum of carbon utilisation, with Slow strategies being more tolerant of shaded conditions.  

The results obtained in this study showed a community shift towards storage-

prioritising strategies, as seen in the shift from Slow-Risky to Slow-Safe plants with increased 

stochasticity and stress intensity (Figure 3-9). As carbon storage strategy may be adapted to 

local conditions (e.g., Blumstein & Hopkins, 2021), the increased variability of local weather 

conditions and more extreme disturbances associated with climate change (IPCC, 2021) may 

contribute to significant shifts in community composition. Traits conferring drought- and 

heat-resistance have been increasingly emerging as contributors to plant survival in 

ecosystems worldwide. Shifts in community composition have been observed in tropical 

ecosystems towards increased representation of drought-resistance trees (Feeley et al., 
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2011) and shifts in plant trait representation towards decreased specific leaf area and 

increased wood density, which are indicative of increased hydraulic resistance (Swenson et 

al., 2020). Long-term vegetation shifts towards more drought-resistant individuals have also 

been observed after severe droughts in south-western USA (Mueller et al., 2005). However, 

changes in species composition may not occur if there is a plastic change over time in the 

strategy of an individual.  

Trait plasticity was not considered in this study but may be important in further work 

examining NSC strategies to climate change. For example, seedlings may acclimate to 

repeated stress by increasing storage of non-structural carbohydrates (Myers & Kitajima, 

2007). Trait plasticity may be an important factor in trees under increasingly intense and 

varied environmental stress (Gallagher et al., 2019; Lanuza et al., 2020; Lecina-Diaz et al., 

2021).  

3.4.1 Effect of environmental stress 

In addition to its effect on community composition, stress led to a significant decrease in 

carbon sequestration, as determined by the total basal area of the plants (Figure 3-8). 

Moreover, stress affected the outcome of competition among strategies (between Slow-

Risky and Slow-Safe), with stochasticity having a more pronounced effect than the mean 

stress duration (Figure 3-9). Increasing stochasticity of the stress led to an increase in the 

number of Slow-Safe strategy trees and a decrease in Slow-Risky trees. Rather than average 

intensity, the presence of extreme events affected the decline of trees in the Slow-Risky 

strategy in the high stochasticity environments. 

In order to evaluate the predicted response to stress duration, we need to identify 

seasonal and non-seasonal environments with similar climatic conditions, such as 

temperature and water availability. To evaluate the predicted response to stress 

stochasticity, examining stochastic variation in an environment would be greatly beneficial, 

although it is not estimated directly in many studies. Measures such as the rainfall 

seasonality index (Markham, 1970), which can assist in defining the constancy of an 

environment, and other measures of environmental variability (Katz & Brown, 1992), would 

be valuable in assessing predicted responses to environmental stress (Lemoine, 2021). 

Furthermore, identifying species with different NSC dynamics, including variations in intra-
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annual NSC concentration and rate of storage accumulation, is needed for comparisons 

between storage in trees and model results. Unfortunately, there are few datasets available 

against which to evaluate model predictions, as NSC concentrations are rarely (although 

increasingly) measured, while utilisation of stored carbon does not have an equivalent 

measurement which can be used on whole-tree scales.  

In one valuable recent study, Signori-Müller et al. (2021) measured NSC 

concentrations during the wet and dry seasons in tropical forests with varying dry season 

lengths. Trees in strongly seasonal and non-seasonal tropical forests showed a similar NSC 

concentration during the wet season, with variation among trees in storage concentrations 

attributed primarily to species differences (Signori-Müller et al., 2021). During the dry 

season, trees at sites with an extended dry season showed a different NSC composition, 

with a transition from higher starch content during the wet season to higher soluble sugar 

content during the dry season (Signori-Müller et al., 2021), as compared to sites with a 

shorter dry season. Starch is a long-term NSC storage compound, while soluble sugar is 

actively used in metabolism and may be mobilised during stress (Dietze, Sala, et al., 2014). 

The shift in intra-annual NSC-dynamics along the observed seasonality gradient, may 

suggest a shift between growth-prioritisation and storage-prioritisation to survive stress 

during the dry season. There is evidence for similar shifts from growth-prioritising strategies 

to storage-prioritising strategies within species across environmental stress gradients, 

including rainfall (Bachofen et al., 2018; Hao et al., 2021) and elevation gradients (Wang et 

al., 2018). In the model developed in this chapter, water dynamics are not included, but 

shifts in storage along stress gradients may be comparable to the shift from Risky plants to 

Slow-Safe plants in the model with rising stress duration. 

3.4.2 Modelling Carbon Storage Parameters 

Beyond improving model realism, the representation of carbon storage in models is 

important for two reasons: capturing accurate mortality mechanisms (McDowell et al., 

2008) and removing the direct coupling between photosynthesis and growth (Keane et al., 

2001). Without carbon storage, models assume that all growth is supported by carbon gain 

within the same timestep, a dynamic which is unrealistic on smaller time steps (Fatichi et al., 

2014, 2019; Piper, 2020). Although the number of models implementing carbon storage is 
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increasing, there are still no consistent guidelines for modelling carbon storage (Dietze, Sala, 

et al., 2014). While some studies have looked at sensitivity of single carbon storage 

parameters (Fisher et al., 2010; Jones et al., 2020) or the effects of model structure (Jones et 

al., 2020; Richardson et al., 2013; Trumbore et al., 2015), further examination of the 

sensitivity of more complex allocation strategies is needed. In this work I demonstrate that 

different storage parameters can have nuanced effects on plant mortality. Firstly, the rate of 

carbon utilisation strongly affected tree shade tolerance during periods of no stress. Trees 

with the Slow strategy had higher shade tolerance because they maintained higher 

minimum carbon storage concentrations (Figure 3-6), which, in turn, increased the 

probability of surviving in low-light conditions (Figure 3-15). The relationship between shade 

tolerance and carbon storage has been strongly supported by model (Kobe, 1997) and 

experimental studies (Atkinson et al., 2014; Myers & Kitajima, 2007; Rose et al., 2009).  

Similarly, the switch time parameter was found to affect survival during seasonal 

stress (Figure 3-14). Experimental studies have shown similar decreases in growth along an 

environmental stress gradient (Wang et al., 2018) and as an acclimatory response of tree 

seedlings to past stress (Vander Mijnsbrugge et al., 2019), thereby supporting the role of 

decreased growth duration in mitigating stress periods. While mechanisms of tree mortality 

under stress are often complex, involving a number of contributing factors, including 

susceptibility to hydraulic damage, herbivory or pathogens, these model predictions support 

the theory that stored carbon plays an important role in buffering the damage caused by 

stress (McDowell et al., 2008). Even though additional factors such as drought or herbivory 

dynamics were not included in the model, the presence of storage in the model still allowed 

for a range of behaviours to be captured. 

Improving the representation of carbon storage in models should be considered a 

priority (Merganičová et al., 2019) and one avenue is to examine the relationships between 

storage strategies and plant traits. In this study, I demonstrated that a more nuanced 

storage utilisation strategy, adopting variation in only two parameters, increases the range 

of observable behaviours. However, I assumed that all other traits were constant, whereas 

many other plant traits may influence plant strategy and growth to the same degree as the 

two storage traits examined in this study. For example, shade-tolerance in the model is 
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associated with low carbon utilisation-rate (𝛼#), but plants have a range of other traits 

associated with shade tolerance such as leaf economic traits (e.g. lower leaf mass per area 

or leaf nitrogen content) and hydraulic traits (higher stomatal density) (Abbasi et al., 2021; 

Zhu et al., 2018). Plants with high shade tolerance often have lower leaf nitrogen 

concentration (Kitajima, 1994; Kruse et al., 2020) and may be placed on the conservative 

end of the leaf economic spectrum, a continuum between resource acquisitive and 

conservative species (Reich, 2014; Wright et al., 2004). While nitrogen variation was not 

considered in the model, increased nitrogen concentration in modelled plants could 

contribute to shade tolerance by diminishing their effect.  

The few studies which do compare plant traits and storage allocation do not appear 

to show clear relationships between storage patterns and other plant traits. In some 

studies, no distinct relationships were found between storage levels and plant traits such as 

potential tree size, mean growth, mortality rates and wood density (Signori-Müller et al., 

2021). A synthesis examining plant drought mortality found a relationship in gymnosperms 

between storage and hydraulic traits, such as embolism resistance at mortality and 

hydraulic safety margin, but because data from one species may have significantly 

influenced this result, the relationship may not be generalised across all gymnosperm 

species (Adams et al., 2017). Comparisons of NSC concentration with root traits, however, 

showed NSC relationships strongly associated with root morphological traits such as specific 

root length and average diameter (Ji et al., 2020), while soluble sugar concentrations in 

branches were negatively associated with wood density (Dickman et al., 2019) and 

phenological traits captured intra-annual NSC dynamics in three Mediterranean crop species 

(Tixier et al., 2020). While this list is not exhaustive, it shows contrasting relationships 

between traits and carbon storage, thereby warranting further examination of the 

relationship between modelled carbon storage parameters and observable plant traits, 

which could significantly aid in improving modelling accuracy of carbon storage.  

Moreover, modelling carbon allocation strategies may be complicated due to their 

dynamic nature, which is not considered in the model presented here. Age and shade can 

affect the strategy parameters. It would be of interest to explore the effect of age and size 

in model parameterisation. For example, the storage utilisation rate has been found to vary 
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with plant age in a model-data-assimilation study (Mahmud et al., 2018). Diurnal NSC 

concentrations within a plant also have been shown to change between seedlings and 

mature plants of the same study (Baber et al., 2014) and differences between carbon 

allocation strategies were found in trees of different heights (Sala & Hoch, 2009; Woodruff 

& Meinzer, 2011). It would be valuable in future work to relax assumptions about the static 

nature of plant traits to examine a wider range of strategies. 

In addition to the assumption about trait variation between strategies, several other 

aspects of the model limited the results presented in this chapter. Most importantly, the 

lack of reproductive feedback is likely to have affected community composition and model 

outcomes. At any given time, each strategy has an equal chance of establishing in the plot. 

For a 100-year simulation this assumption is an acceptable simplification, but it would be 

valuable to explore feedbacks via changing seed production over longer time periods.  

3.5 Conclusions 

This model provided an evaluation of the effect of environmental stress and stochasticity on 

the performance and survival of plants with different carbon storage strategies. The 

representation of carbon storage strategy by two traits allowed a nuanced response to 

different types of stress to be captured and highlighted the role of carbon storage in tree 

survival. Shifts in modelled community assembly of trees in response to increased 

environmental stochasticity and intensity supports previous observations of shifts of 

community composition towards more stress-resilient plants. Further examination of the 

effect of other plant traits, and the inclusion of reproductive activity, in the model would 

help further elucidate the relationship between modelled plant carbon storage traits and 

observable plant traits.  
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Environmental stress 𝐸'G𝑡gH = 6
𝑡g < 𝑡,&-" ⟹ 1
𝑡g ≥ 𝑡,&-" ⟹ 0 
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3.7 Appendix: Smoothing piecewise step functions 

The piecewise step function: 

 

𝐸'G𝑡gH = 6
𝑡g < 𝑡,&-" ⟹ 1
𝑡g ≥ 𝑡,&-" ⟹ 0          ( 3-17 ) 

Is implemented in the model as:  
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   ( 3-18 ) 

This allows a smooth stress transition which assists in the model solver. This is further 

illustrated in the following figure:  

 

 

Figure 3-17 A representation of the dynamic function that determines the stress factor for a hypothetical year. 0 and T indicate the beginning 

and end of the year. The differently coloured sections are the three conditions in Equation 3-18 which correspond to the different step 

functions. Because the 𝑡,-.# value is different each year, the precise shape will vary. 



  

4 Iterative Predictive Optimisation of Carbon Storage Allocation  

Abstract 

As climate change progresses, plants are expected to experience increasingly stressful 

environmental conditions. Up to certain thresholds, plants can survive and recover from 

stress by storing carbon, which is theorised to have evolved as a locally optimised process. 

One challenge in defining these thresholds is that environmental stress is typically highly 

stochastic. Here, I explore optimal plant responses to stochastic stress by developing a new 

framework which iteratively computes an optimal storage trajectory and updates it to 

respond to changing conditions. The framework applies model predictive control (MPC) to a 

simple plant model, coupled with an environmental model consisting of semi-random 

rainfall modelled as a Markov Process. I explore how the model performs with a range of 

optimisation goals and compare it with the more traditional optimisation framework 

(optimal control theory, OCT) described in Chapter 2. Under both the OCT and MPC 

frameworks, goal functions maximising storage proved unrealistic and had no or minimal 

biomass allocation. When maximising biomass, both frameworks had a similar allocation 

pattern, but MPC maintained a significant storage buffer. The changes in MPC framework 

properties (forecasting prediction and memory windows) exhibited a positive correlation 

with the size of the storage buffer, but at the cost of a lower fitness. Overall, the MPC 

framework successfully imitated the optimisation framework, but also allowed an 

exploration of the relationship between stress and the carbon storage buffer. Future 

expansion of the framework would allow for forecasting optimal plant response to changing 

environments.  

4.1 Introduction 

Climate change is driving increased extreme stress on the environment (IPCC, 2021). 

Increased and prolonged droughts (Dai, 2013), heatwaves (Cowan et al., 2014), frost events 

(Zohner et al., 2020) and other climatic extremes, as well as their combinations (Gampe et 

al., 2021; Vanoni et al., 2016), are becoming more common. These changes can have a 

profound effect on individual trees and forests as trees are increasingly pushed beyond their 

tolerance limits. The stress exerted by climate change will lead to increased individual 

mortality and demographic shifts (Adams et al., 2017; Allen et al., 2010; Anderegg et al., 
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2015).  A crucial part of predicting regional and global effects of climate change is predicting 

the response of tree growth and mortality to future stress because of the role that forests 

play in the global carbon balance (Bonan, 2008; Huntzinger et al., 2017; Le Quéré et al., 

2009; Sitch et al., 2015). Vegetation models are widely used to predict forest responses to 

climate change (Clark et al., 2016; Fisher et al., 2018; Medlyn, Duursma, & Zeppel, 2011; 

Reichstein et al., 2019). However, there is increasing awareness that these models may not 

capture all the key processes that determine the predicted stress response (Merganičová et 

al., 2019), particularly processes leading to mortality (Adams et al., 2013; Davi & Cailleret, 

2017).  

Carbon storage is one of the key mechanisms which plants use to survive stress 

periods. Carbon is usually stored in the form of starch and soluble sugars, commonly 

referred to as non-structural carbohydrates (NSC) (Hoch et al., 2003). Stored NSC can be 

used to maintain plant function during stress periods, and to rebuild tissues following stress. 

Despite increasing attention over the last 10 years, there are significant challenges in both 

quantifying and modelling carbon storage (Merganičová et al., 2019; Quentin et al., 2015). 

Plants can store carbon in all their organs, including leaves, stems and roots (Kozlowski, 

1992) but different species adopt varying strategies for allocation and use of stored carbon 

through time (e.g., Mitchell, O’Grady, Hayes, et al., 2014; Tixier et al., 2020) and across 

different tissues (Hartmann & Trumbore, 2016). Moreover, carbon storage allocation is 

dynamic and allocation strategies can change with plant age (Baber et al., 2014), 

environmental conditions (Hao et al., 2021; Hoch et al., 2002; Signori-Müller et al., 2021), 

and individual life history (Atkinson et al., 2014). In trees, carbon is acquired and used at 

different times of year, particularly in deciduous species (Sala et al., 2012; Wiley & Helliker, 

2012). Mobilisation of stored carbon can occur within days, months (Richardson et al., 2013, 

2015), or several years after it was acquired (Vargas et al., 2009). These different time 

periods for storage and use act to buffer the plant against stress operating at different time 

scales – daily, seasonal, and interannual.  

There is increasing evidence for adaptation of the carbon storage strategy in more 

stressful environments. For example, a recent study on black cottonwood demonstrated 

heritability of non-structural carbohydrate concentrations. Provenance affected the 
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proportion of stored starch (more ideal for long term use) versus stored sugar (better for 

short term use); in more stressful environments, this genetic component was more 

pronounced (Blumstein & Hopkins, 2021). This variation among provenances indicates 

selective pressure, with tree capacity to survive stressful conditions improved when NSC 

storage is adapted to the local environment (Bachofen et al., 2018; DeSoto et al., 2016; 

Piper et al., 2017; Reyes-Bahamonde et al., 2021). At shorter time scales, plants can also 

acclimate to local conditions by varying how and when carbon - and other limiting resources 

– are distributed. For example, during a stress period the tree distributes resources from its 

storage pools to meet critical metabolic needs, as well as functions specific to the stress 

response (such as tissue repair) (Chapin et al., 1990). Conversely, when stress is absent, 

photosynthate is readily available for use by the plant. In such conditions, the plant can use 

both recently acquired and stored carbon for growth and metabolic requirements (Carbone 

et al., 2013; Keel et al., 2006; von Felten et al., 2007). Therefore, stored carbon becomes a 

critical resource which can either be spent or saved, i.e. in the language of economics, 

storing carbon presents an opportunistic cost to growth and thus creates – in economic 

terms - a growth-storage trade-off (e.g., Atkinson et al., 2014; Myers & Kitajima, 2007). 

To predict forest responses to climate change requires models that can predict the 

availability of NSC to buffer increasing stress, but developing such models is challenging. 

One tool that has been used to explore allocation strategies is dynamic optimisation 

modelling (Franklin et al., 2012; Iwasa, 2000) such as optimal control theory (OCT). OCT 

models have successfully predicted some of the carbon allocation dynamics in annual 

herbaceous plants (Chiariello & Roughgarden, 1984). Moreover, general patterns of 

allocation predicted by these models - such as clearly delineated periods of growth, storage, 

and reproductive activity - can be observed in an annual plant’s rapid shifts from growth to 

reproduction (e.g., bolting, the rapid elongation of reproductive structures, Aronson et al., 

1992). However, it is more difficult to use OCT for prediction of behaviour in perennial 

plants and trees because annual dynamics may be insufficient to capture the complexity of 

long-lived species. When optimal allocation during a stress period or over a seasonal time-

course is modelled, the plant will be predicted to fully deplete its stored carbon at the end 

of the stress period or season, when maximising biomass growth (Chapter 2) or 
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reproductive output (Iwasa & Cohen, 1989). In reality, trees tend to maintain large NSC 

minima (Martínez-Vilalta et al., 2016). If, instead, total storage is maximised, the OCT 

approach predicts that little to no carbon will be allocated to growth, leading to a 

biologically unrealistic storage-to-biomass ratio (Chapter 2).  

This disparity between observation and model outcomes occur because the OCT 

models are deterministic, assuming that both the environmental conditions and the length 

of the stress period are known (e.g., Iwasa & Cohen, 1989; Iwasa & Roughgarden, 1984). In 

reality, there is usually stochasticity in the stress. Accounting for variable stress risk can have 

a significant effect on predicted carbon allocation strategies. When stochastic dynamic 

programming (SDP) – an extension of OCT that allows for stochasticity - is used, a 

relationship between risk and allocation emerges. For example, stochastic and destructive 

local events, such as fire, affect the optimal storage-to-foliage ratio (Iwasa & Kubo, 1997), 

which influences the capacity of the plant to recover. Likewise, dynamic models for 

estimating optimal allocation strategies to reproduction have been derived using SDP 

(Iwasa, 1991). However, SDP requires assumptions regarding equilibrium dynamics that may 

not hold when examining stress responses for trees. For example, the embedded statistical 

tools focus on the average individual tree response to average conditions. As conditions are 

likely to change within an individual lifetime, SDP may not fully capture the biologically 

realistic dynamics involved in plant acclimation to stress. If our aim is to model the 

acclimation of tree carbon storage strategy to changing conditions, it is important to create 

a framework that can capture how plant response may vary in a stochastic environment. 

The system must be able to extrapolate potential future conditions from present ones (i.e., 

able to forecast) in a manner that imitates some predictive, or anticipatory, capability 

(Rosen, 2012, pp. 339–351). This framework should make use of OCT and SDP properties of 

anticipating both present and future benefits, thereby accounting for present and 

forecasted risk. 

In this chapter, I attempt to develop such a framework. In order to better reflect risk 

(i.e., stochastic variation in stress), I consider feedforward and feedback responses to 

explore their effects on NSC storage and allocation strategies. To achieve this, I employ a 

feedback-loop system that uses a “memory” parameter that captures the incidence of past 
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events to complement knowledge of present conditions. In addition, I implement a 

feedforward response by using another method in the OCT/SDP family called model 

predictive control (MPC).  

Like OCT, MPC creates a short-term prediction of optimal behaviour over a time 

window. However, where OCT only models this period as a single prediction, MPC first uses 

a short(er) term prediction to initialise the model, and then uses a sliding time window – 

updated with any new events - to explore the optimal behaviour over a longer time frame. 

Therefore, a framework which uses MPC will have an updating model of predicted 

conditions, which can capture a changing environment. Moreover, a memory of past 

conditions can be also incorporated, enabling the prediction of optimal behaviour to be 

updated as conditions change. This system allows me to construct a model that is adaptive, 

forecasting, and anticipatory, enabling the identification of the strategy that directs the 

plant towards a particular optimal fitness outcome, while also capturing plant capacity to 

respond to stochastic conditions. I implement this framework using a “toy” model 

(introduced in Chapter 2) to investigate broad patterns of behaviour without attempting to 

account for the full complexity of the biological reality. The environment is represented with 

slightly more complexity: it is assumed there are two seasons (wet and dry) with stochastic 

rainfall determined by different parameters in each season. This chapter has the following 

aims: 

1) Evaluate how the predicted allocation behaviour using an MPC approach 
compares to the OCT approach presented in Chapter 2; 

2) Identify how the predicted allocation behaviour varies depending on the specified 
optimisation goal; 

3) Evaluate the sensitivity of the model to changing control framework parameters 
such as predictive time window and length of environmental memory.   

 
4.2 Methodology 

The model framework consists of three distinct components: 1) the plant model which 

describes plant growth given allocation parameters, 2) the environment model which 

describes rainfall inputs over time, and 3) the control architecture which determines the 

allocation parameters given plant and environmental constraints.  
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4.2.1 Plant model 

The plant model is the same as that used in Chapter 2. Briefly, the plant has two carbon 

pools: a biomass pool (𝑀) and a storage pool (𝑆) and all processes are represented as linear 

processes dependent either on the biomass pool (respiration, R, photosynthesis, A, and 

evapotranspiration, E), or the storage pool (growth, G). Further details of the model can be 

found in Chapter 2 Methodology. 

4.2.2 Environment model 

The plant is assumed to experience two seasons in the simulation: the rainy season and the 

dry season. Water input each day is determined by a rain model, which has different 

parameters for each season.  

The rain model consists of two elements: 1) a Markov Chain (MC) determining 

whether or not there is rain input that day; and 2) a Chi-square distribution (𝒳M(𝑘)) which 

controls how much rain falls that day. The use of an MC adds some predictability into the 

system allowing rain days to be more likely followed by other rain days and dry days to be 

more likely followed by other dry days, i.e., a simplified weather system. If there is rain on a 

given day, the Chi-squared distribution determines the amount of water input, 𝑖", that day 

(𝑖" = 𝒳M(𝑘), where k specifies the degrees of freedom in the distribution). Using a Chi-

Squared distribution to determine the amount of water input allows for rain input to be 

random, while also skewed towards less rain and with extreme values possible, though 

unlikely.  

The rain input is therefore given by: 

	𝐼" 	= 	𝑓(𝜋" , 𝑖")        (4-1) 

where 𝜋" is the Environment state, which can be either Dry (𝜋" = 𝑆l) or Rain (𝜋" =

𝑆w). When the plant is in the dry state, 𝜋" = 𝑆l, there is no water input and, therefore, 𝐼" =

0. On the other hand, when the model is in the rain state, 𝜋" = 𝑆w, there is water input as 

determined by the Chi-Squared Distribution (𝑖" = 𝒳M(𝑘 = 40), Figure 4-1).  
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Figure 4-1 The Chi-Square distribution, 𝒳0(𝑘 = 40), determining the likelihood of the amount of rain input in a day. Rain input is expressed 
in kg per plant per day. If a stocking density of 1000 stems ha-1 is assumed, these values can be converted to mm d-1 by dividing by 10.  

The environment state is generated from two Markov Chains (MC) with the same 

states, but different state transition probabilities. The first Markov Chain model represents 

the Rainy Season (RS-MC), and the second Markov Chain represents the Dry Season (DS-MC; 

Figure 4-2). The transition from the Rain Season to the Dry Season occurs at time 𝑡 = 𝑡,&-" . 

The value of 𝑡,&-" was chosen from several putative values used in test simulations. The final 

value was chosen such that there was significant growth, as well as a severe but not critical 

drought. The state transition and steady state probabilities for the Rainy Season MC are 

given in Table 4-1 and for the Dry Season MC in Table 4-2. Both MC have stable probabilities 

which meant that the steady state probabilities could be numerically computed. The steady 

state probabilities indicate the independent likelihood of each state occurring in that 

season.  
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Figure 4-2 An illustration of the Rain Model for the Rain Season (left) and the Dry Season (right). The transition from the Rain Season to the 

Dry Season occurs at time 𝑡 = 𝑡,-.# indicated on the x axis. Within each season, a Markov Chain (MC) is used to determine the state transition 

from one day to the next. The two states used in both models are the dry state, 𝑆1 and the rain state, 𝑆2. The arrows between the states 

signify allowable transitions (fully connected MC) with arrow thickness indicating the likelihood of transition. The bars indicate the steady 

state for each of the states of the Markov Chains (𝑆2: green; 𝑆1: orange) with the values given atop each bar. The steady state values indicate 

the likelihood of each state to occur independent of the past states.
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with constraints placed on the plant biomass and storage to ensure that neither of them can 

become negative: 

𝑀" ≥ 0         ( 4-3 ) 

𝑆" ≥ 0          ( 4-4 ) 

In other words, the plant maximises the integral of its mass size (𝑀) and storage size 

(𝑆). This differs from the goal function of Chapter 2 in which an end point value was used. 

While functionally the two approaches are similar, the use of an integral complements the 

continuous nature of the control architecture framework used in this chapter. To simplify 

presentation of the large values that result from using this new fitness goal, results are 

presented as the fitness output (i.e., the value of Φ.4) normalized by prediction time 

horizon (𝑡)) to give a daily average size of Φ.4 and help with interpretation. 

The fitness goal parameter, 𝑘4, takes a value between 0 and 1 and signifies the 

plant’s prioritisation between storage and biomass (see Chapter 2). In the special case of 

𝑘4 = 0 the plant maximises the total storage integral (MaxS), and in the case of 𝑘4 = 1 the 

plant maximises the total biomass integral (MaxM).  

The iterative nature of the MPC method suggests that adopting intermediate 𝑘4 

values will influence the behaviour exhibited by the plant: priority will likely shift between 

the MaxM and MaxS behaviour depending on the plant size and environmental conditions.  

The optimal behaviour is calculated over a forward time window, 𝑡). To compute 

this optimal behaviour, an estimate of the environmental state over the forward time 

window is required.	To distinguish this estimate from the actual environment state 𝐼", I 

denote the predicted environmental state as 𝑰𝒕 (𝒕P𝒕𝒘)
C .   

The simplest prediction method that can be applied is to assume that the water 

input will be the same over the coming days as it is on the current day: 

 𝑰𝒕 (𝒕P𝒕𝒘)
C = ª𝐼"C = 𝐼" , 𝐼"PNC = 𝐼" , … , 𝐼"P"=

C = 𝐼"¬     ( 4-5 ) 

An alternative method of prediction uses information from past experience by 

adding a memory mechanism. In this way, when the plant encounters a single dry day 

during the rainy season, its behaviour won't be immediately affected (and vice versa). 
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The plant model can remember the rain pattern for the last 𝑡= days and use these in 

its predicted water input (𝑰𝒕 (𝒕P𝒕𝒘)). If the time window is longer than the memory period, the 

memorised rain pattern is repeated to fill the full space of the time window: 

𝑰𝒕 (𝒕P𝒕𝒘)
C = ª𝐼"C = 𝐼"O"' , 𝐼"PN

C = 𝐼"O"'PN, … , 𝐼"P"=
C = 𝐼"¬   ( 4-6 ) 

4.2.4 Simulations 

The model is implemented through a combination of Matlab (Version R2020b, 

Mathworks) and R (version 3.6.3, R Core Team, 2018). The constrained nonlinear 

multivariable Matlab function fmincon is used to compute the short-term optimisation over 

the predicted time window. This function uses a nonlinear programming solver and was 

used with the interior-point algorithm which solves a constrained minimization problem by 

attempting to solve a sequence of approximate minimization problems (MathWorks, n.d. 

and the sources therein). The short-term optimisation computes the set of values 𝒖𝒕 𝒕P𝒕𝒘 =

[𝑢" …𝑢"P")] that maximises the objective function over the prediction window, 𝑡). All 

values of the predicted 𝒖𝒕 𝒕P𝒕𝒘 are allowed to vary independently from each other within 

the limits of 0 and a maximum rate of utilisation of stored carbon to growth, 𝑘'. 

Furthermore, 𝑘' follows mass-balance constraints which means it can never exceed 1:  

0 ≤ 𝑢" ≤ 𝑘' ≤ 1        (4-7) 

The remainder of the framework and result analysis are performed in R with the 

assistance of the tidyverse package (Wickham et al., 2019). The repository containing code 

can be found in the following link: https://github.com/foxeswithdata/recursive learning. 

Additionally, to assist with comparison between the MPC and OCT methods the OCT 

simulations are performed using code developed in Chapter 2 (repository: 

https://github.com/foxeswithdata/StoringForDrought).  

 
4.2.4.1 Parameters 

The parameters used in the model are derived from an experimental study by Drake 

et al. (2019). The 15-month long experiment exposed young Eucalyptus tereticornis trees to 

factorial warming x rainfall reduction treatments in whole-tree chambers. Parameters are 

given here for completeness, but details of parameter derivation can be found in Chapter 2.  
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function, a nonlinear programming solver over the entire simulated period of 250 d) had the 

same rainfall input as the control framework simulation and aimed to maximise the integral 

form of the goal function (Equation 4-2). Additionally, the brute-force optimisation solution 

was run five times with random initial conditions for each goal function and rainfall regi me 

combination, using the maximum fitness solution. I cannot guarantee that the global 

optimum is always found, but this approach does account for potential local minima. 

The effect of the optimisation target was investigated by specifying a number of 𝑘4 

values: 𝑘4 = {0,0.45,0.5,0.55,0.6,0.65,0.75,1}. For a single rainfall regime, the range of 𝑘4 

values was further expanded to cover the full spectrum of possible values. The two edge 

cases of MaxM (𝑘4 = 1) and MaxS (𝑘4 = 0) are captured as well as several intermediate 𝑘4 

values, which appear near the MaxS-MaxM behaviour boundary shown in Chapter 2. 

Moreover, a comparison between no memory (𝑡= = 0𝑑) and 5 day memory (𝑡= = 5𝑑) was 

conducted. Finally, the effect of the prediction time window was investigated by looking at a 

range of time windows from short (10 days) to long (25 days): 𝑡) = {10𝑑, 15𝑑, 20𝑑, 25𝑑}. 

All possible combinations of the above are examined for five rainfall patterns with the 

switch between rain and dry season at 𝑡,&-" = 150𝑑 for a total of 320 simulations. An 

example of a rainfall simulation can be found in Figure 4-3. Because of the time required for 

each simulation (up to 6 hours of High Performance Computing time) the simulations had to 

be limited to the 64 simulation settings described above. 

4.3 Results 

4.3.1 Comparison of prediction methods 

A sample state trajectory for a single rainfall simulation (Figure 4-3; 113 days with no rain 

and 73 days which fall in the dry period) can be found in Figure 4-4. In this example, the 

figure shows the optimal state trajectory for the deterministic OCT model, brute-force 

optimisation solution and the control architecture framework results for the two extreme 

strategies of MaxM and MaxS and two in-between strategies (𝑘4 = 0.45 and 𝑘4 = 0.65) for 

the control architecture only.  
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Figure 4-3 A: Randomly generated rainfall used in evaluating simulations. B: Cumulative water available to the plant with random rainfall. 

The MaxS strategies show the same, or nearly the same, behaviour under all 

simulations in that the plant utilises minimal (Figure 4-4B and C) or no carbon for biomass 

growth (Figure 4-4A). This is consistent with an analytical OCT solution in that a plant which 

maximises storage may benefit from some growth, but must spend most of its effort storing 

carbon (Chapter 2). The MPC control framework cannot predict the slight benefit that is 

gained from a short growing period at the beginning of the simulation, likely linked to the 

prediction window which is too small to account for benefits of growth. Moreover, while the 

MaxS fitness objective may be valid for a short severely stressed period, it is unlikely that 

this objective corresponds to whole-plant fitness in the long term.  
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Figure 4-4 Carbon and water pool trajectories obtained from running simulations for the OCT, brute-force optimisation and control 

frameworks (with time window of 𝑡3 = 25𝑑). Shown here are the extreme-cases of 𝑘) (MaxS and MaxM; OCT framework: B and F 

respectively; Brute-Force Optimisation: C and G respectively; Control Framework: A and E respectively) and two example intermediate 

values of 𝑘) (𝑘) = 0.45	and 𝑘) = 0.65; Control framework only: D and H respectively). For MaxS and MaxS equivalent (𝑘) = 0.45) strategies 

the response of all three frameworks is similar with no or minimal storage utilisation for biomass growth. MaxM strategies show some 

variation with the general shape of the solution: the OCT and the control framework are similar with an initial period of growth followed by 

storage; and the Brute-Force Optimisation framework showing a contrasting behaviour of storing all available carbon and rapidly growing 

towards the end of the simulation. Of note is that although the OCT and control framework solutions are similar, the control framework 

maintains a buffer of stored carbon, whereas the OCT framework finishes the simulation with no stored carbon.  

For the MaxM fitness objective, there is some consistency in behaviour predicted by 

the MPC and OCT methodologies, but the Brute-Force approach yields a very different 

response. While the MPC control framework for MaxM strategies gives a state trajectory 

shape that is similar to that obtained with deterministic OCT, there are differences in the 

values of the states, with the Control Framework generally yielding smaller values than the 

deterministic OCT solution for both final and averaged daily pool sizes (Figure 4-5). On the 

other hand, the MaxM brute-force yields an alternative behaviour in which allocation is 

delayed until the end of the simulation (Figure 4-4G). This behaviour minimises respiration 
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costs rather than maximising carbon uptake, while simultaneously avoiding water depletion. 

The accumulated storage is then used to promote rapid growth at the end of the simulation. 

However, when the integral-form of the goal function (Equation 4-2) is considered, the 

brute-force MaxM and MaxM-equivalent solutions are suboptimal, when compared to their 

OCT and Control Framework counterparts (Figure 4-5A).  

The observed differences between the different models can be confirmed when 

examining the size of the plants as determined by their biomass. Final and average daily 

biomass size was largest for the OCT solution (Figure 4-6) across all scenarios. The final 

biomass of the Brute-Force MaxM solution was comparable with that of the equivalent OCT 

solution, but the average daily biomass size was not. On the other hand, the average daily 

and final biomass of the MPC models was lower than that of the optimal control solution.  

 

Figure 4-5 Fitness output evaluation for different model settings with four different goal functions. Fitness is evaluated as the average daily 

fitness goal output, 𝛷*), (A) and carbon pool size (calculated as 𝑘)𝑀( + ;1 − 𝑘)=𝑆() at the end of the simulation (B). The value of 𝑘) is given 

above each box with MaxS indicating 𝑘)=0 (maximising storage) and MaxM indicating 𝑘) = 1 (maximising biomass). Error bars indicate 

standard deviation for each group (N=5). Colours indicate different model types: Optimal Control Theory solution (OCT: blue), Brute-Force 

optimisation solution (red), control framework with no memory (MPC no memory, green) and control framework with a 5 day memory (MPC 

5d Memory: yellow). For MPC outputs, shade intensity indicates the size of the forward prediction time window, 𝑡3 (with lighter shade 

indicating shorter time window).  
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Figure 4-6 Biomass pool size as a daily average over the simulation (A) and at the end of the simulation (B) for different models and with 

different fitness goals. Legend as in Figure 4-5.  

The difference between models can be explained by analysing the computed 

allocation trajectories for a single rainfall regime (Figure 4-7). The OCT and Control 

framework solutions follow a bang-bang response dynamic, in which the storage utilisation 

rate, 𝑢", switches between its maximum and minimum values. The OCT solution has one 

such switch distinguishing between a growth and storage phase (at t=10 for the MaxS 

solution and at t=113 for the MaxM and MaxM-equivalent solutions). The Control 

framework solution also has two phases, growth and storage, but in each phase, there can 

be multiple start and stop growth switches. The last day of growth in the first phase is t=143 

for the 𝑘4 = 0.65  solution and t=115 for the MaxM solution. Compared to the OCT 

solution, the number of growing days is significantly reduced: 58 days for the 𝑘4 = 0.65 

solution and 47 days for the MaxM solution. However, this decrease in growing days does 

not translate to an equivalent decrease in biomass; there is an average of 25% decrease in 

the final biomass of the control framework solution compared to OCT (Figure 4-6). This can 

be attributed to the fact that the plant accumulates storage over the days when it does not 

grow; thereby, the absolute value of stored carbon utilised for growth becomes larger on 
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the days when the plant does grow. The same pattern explains why the final biomass of the 

brute-force solution may be comparable to that of the OCT solution: in the MaxM solution, 

the plant only grows in the last 30 days but the final biomass is comparable to that of the 

OCT solution (Figure 4-6) because the storage accumulated over the first part of the 

simulation can be quickly mobilised.   

 

Figure 4-7 Shape of the storage utilisation trajectory over time computed for different models used in the study and across different values 

of 𝑘). Values are for one rainfall simulation only. The models correspond to Optimal Control Theory (OCT), Brute-Force and Control 

Framework with a time window of 25 days and a memory window of 5 days (MPC). Fitness goal parameters range between MaxS (𝑘) = 0, 

left), MaxM-equivalent (𝑘) = 0.65, middle) and MaxM (𝑘) = 1, right).  

The difference within the control framework solutions is attributed to changing the 

size of the memory of previous rain patterns and the prediction window (Figure 4-8). The 

overall shape of the response does not change (two growth phases are still observed in the 

Control Framework simulations: growth and storage, as well as a third phase of water stress 

during the dry season). However, the strategy adopted changes as the memory and time 

windows are increased, leading to a decrease in final biomass size (Figure 4-6) and fitness 

(Figure 4-5), although the effect is less profound for smaller values of 𝑘4. The shape of the 
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storage utilisation trajectory explains these differences. When memory is introduced, the 

modelled plant has a shorter growing period and does not grow during the dry period 

(Figure 4-8). This pattern occurs because the plant model does not use memory, so that the 

predicted rain pattern is either rain every day or no rain at all, whereas when memory is 

used the predicted rain pattern is more variable. Including a memory function allows the 

model to discern between rain season and dry season. Next, increasing the size of the 

forward prediction time window decreases the number of days on which growth occurs 

(Figure 4-8), also leading to a decrease in final biomass. The pattern of decreased growth is 

different between the no-memory and memory model. When there is no memory, there is 

an increase in the number of “storage breaks” in the growth period (days in which the plant 

stores during the growth period), whereas when memory is used the length of those breaks 

increases in addition to there being an overall shorter growth phase. This pattern occurs 

because a longer prediction window requires a larger store of carbon to allow survival over 

a longer period. 
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Figure 4-8 Shape of the storage utilisation trajectory over the simulated period computed for different control framework parameters. Only 

the MaxM solution for a single rain simulation is presented above. Columns correspond to different values of the memory window, 𝑡4 (left: 

no memory, right: 5 day memory) and the rows correspond to increasing sizes of the prediction window, 𝑡3.  

4.3.2 Equivalence of Goal Functions 

When OCT is used to find the optimal storage utilisation trajectory, the predicted response 

is equivalent either to a MaxM or MaxS solution, irrespective of the chosen value of 𝑘4 

(Chapter 2, Figure 2-7, p 54). Analogously, the utilisation trajectory predicted by the control 

framework on each day will predict behaviour that is equivalent to either the MaxS- or 

MaxM goal function. However, the predicted behaviour switches between a MaxM- or 

MaxS-equivalent on a daily scale. Depending on the value of 𝑘4 chosen, the proportion of 

days for which the predicted behaviour is equivalent to a MaxM strategy versus a MaxS 

strategy will vary (Figure 4-9A).  

 When 𝑘4 ≤ 0.5, the predicted behaviour is entirely equivalent to that predicted for 

the MaxS goal function (with 0% of days equivalent to the predicted MaxM behaviour). At 

𝑘4 = 0.55 the predicted behaviour switches to more MaxM-like behaviour, with 45 to 75% 
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of days with behaviour equivalent to the predicted MaxM behaviour. Only at 𝑘4 = 1 (i.e., 

MaxM) does the predicted behaviour follow 100% MaxM-like behaviour. During the 

transition phase, the percentage of MaxM equivalent days does not vary for different 𝑘4 

values, but it does vary with the control parameters (Figure 4-9B). Increasing the prediction 

time window, 𝑡), and memory window, 𝑡=, both increase the percentage of MaxM 

equivalent days.   

 
Figure 4-9 Proportion of MaxM-like behaviour predicted for different goal functions 𝑘), calculated as the percentage of simulation days for 

which the predicted 𝒖(𝒕) value is closer to the value predicted for the MaxM goal function (𝑘) = 1) than the MaxS goal function (𝑘) = 0). 

That is, each day’s prediction is counted as being MaxM-like if |(𝒖𝒌𝒇(𝑡) − 𝒖𝟏(𝑡)| < |𝒖*)(𝑡) − 𝒖𝟎(𝑡)|, where 𝒖𝒌𝒇(𝑡) is the predicted 

trajectory for goal function 𝑘)at time 𝑡, 𝒖𝟏(𝑡) is the predicted trajectory for the MaxM goal function and 𝒖𝟎(𝑡)  is the predicted trajectory 

for the MaxM goal function. (A) Proportion of MaxM-like behaviour is shown for a range of 𝑘) values, for two time windows (𝑡3 = 10𝑑 and 

𝑡3 = 25𝑑) and memory window, 𝑡4 = 0𝑑 = 0 and a single rainfall scenario. (B) Average percentage of MaxM-equivalent days for 

simulated MaxM-equivalent strategies (that is strategies with 0.50 < 𝑘) < 1 according to A). The average is computed across all rainfall 

scenarios and variable fitness goal parameters, 𝑘), within the above-mentioned limits on 𝑘) (N=20). Error bars indicate the standard 

deviation. Averages are computed for varying time windows, 𝑡3 (x-axis) and memory windows (green: 𝑡4 = 0𝑑, yellow: 𝑡4 = 5𝑑). 

4.3.3 Storage Buffer  

The optimal behaviour predicted by the OCT method for the MaxM goal function depletes 

its entire pool of storage by the end of the simulation period (Figure 4-4F). In contrast, the 

behaviour predicted by the MPC framework for the MaxM goal function does not, thereby 



154 

 

maintaining a small buffer throughout the dry season (Figure 4-4E). Notably, the storage 

buffer is predicted to be larger for the MaxM goal function than goal functions which 

prioritise some portion of storage (𝑘4 < 1; eg. 𝑘4 = 0.65, Figure 4-4D).  

Increasing the time window for forward predictions and the memory window for 

past environmental conditions, will increase the size of the storage pool (Figure 4-10). The 

increase in the size of the storage pool is larger than the increase in total plant size, 

resulting in an increase in final storage concentration, as shown in Figure 4-11 for the MaxM 

fitness goal. The size of the time window corresponds to the length of time during which the 

plant needs to survive, so the storage buffer size will increase with a larger time window to 

accommodate the difference between the number of days over which the plant may need 

to support maintenance using stored carbon.  

On the other hand, the increase in the storage buffer size with introducing memory 

is associated with the increased capacity of the model to distinguish between the dry and 

rain periods: when no memory is used the occasional dry day during the rain period may be 

interpreted by the model to be the start of a dry season and vice versa. In contrast, when a 

prediction is made using the 5 days memory window as opposed to a single day only when 

no memory is present, the rain and dry seasons can be distinguished with more accuracy.  
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Figure 4-10 Storage pool size as a daily average over the simulation (A) and at the end of the simulation (B) for different models and with 

different fitness goals. Legend as in Figure 4-5.  
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Figure 4-11 Storage pool concentration (calculated as Storage/(Storage + Biomass)) at the end of the simulation, for the MaxM (𝑘) = 1) 

fitness goal.. Error bars indicate standard deviation for each group (N=5). Colours indicate different memory sizes (green: no memory and 

yellow: 5 day memory). Shade intensity indicates the size of the forward prediction time window, 𝑡3 (with lighter shade indicating shorter 

time window).  

4.4 Discussion 

The idea that natural selection tends to select for organisms with higher fitness in a given 

environment is one of the central tenets of ecology (Parker & Smith, 1990). Modelling 

natural selection through optimisation modelling, including modelling plant behaviour 

(Iwasa, 2000; McGill & Brown, 2007), is thus attractive to capture the outcomes of 

evolutionary processes. However, as plants also adopt short-term acclimation responses to 

environmental variability, modelling the process of dynamic acclimation is necessary in 

understanding plant responses to their environment. In this work, I have created a 

framework for examining plant short-term plastic responses to changing environmental 

risks. This “Control Framework”, which uses model predictive control (MPC), assumes the 

plant can change behaviour relatively rapidly as the risk profile of a stress changes. The 

predicted behaviour was compared with results obtained from OCT deterministic 
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optimisation models under a range of fitness proxies from the goal spectrum of ‘maximising 

storage’ to ‘maximising biomass’. Here I found that the predicted behaviour did not change 

between the control framework and OCT solutions when plants were assumed to maximise 

storage. When maximising the biomass pool, the MPC framework predicts a similar 

allocation pattern to the OCT solution: large initial growth, followed by a storage period and 

a stress period. However, the OCT solution resulted in the depletion of stored carbon at the 

end of the simulation but the MPC solution maintained a sizable buffer of stored carbon. 

Moreover, the size of this buffer was dependent on the properties of the Control 

Framework. The storage buffer increased with a longer prediction time window and with 

the introduction of memory to the model. This difference between the OCT and MPC 

solutions can be attributed to the continuous re-evaluation of environmental conditions in 

the MPC solution. Each day a new optimal response is calculated and, therefore, the plant 

must always have enough stored carbon to survive over the predicted time window. If the 

conditions rapidly change, causing increased plant stress, the MPC methodology can 

capture the flexibility of the response.  

In this chapter, I assumed the existence of a rainy and dry season to capture analogy 

between the MPC and OCT frameworks. This allowed for more stochastic rainfalls to be 

simulated. The continuous updating of the model can be applied to predict behaviour in any 

rainfall or stress scenario. Hence, the Control Framework can be used to predict behaviour 

in more predictable environments, more stochastic environments, or even extreme stress 

environments. 

4.4.1 Comparing strategies: capturing realism and CF/MPC viability 

While the behaviour predicted by the MPC approach is ultimately suboptimal, yielding a 

lower mean value of the optimisation target than the OCT approach, it is nonetheless more 

realistic, i.e., aligns more with observations from experiments (e.g., the maintenance of a 

carbon storage buffer, Martínez-Vilalta et al., 2016). With the MaxM fitness goal, the plant 

is predicted to grow for a period of time during the wet season, before switching to storage 

in response to water availability and increased maintenance costs due to size. During the 

remainder of the simulation, including the dry season, the plant maintains a sizable storage 

pool which can be used by the plant when stressed. In contrast, a deterministic approach 
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using OCT predicts the storage pool would be fully depleted by the end of the observed 

period, which disagrees with most observations in which plants maintain minimum storage 

concentrations (Martínez-Vilalta et al., 2016).  Even less realistic was the brute-force 

optimisation model, which predicted that growth should be delayed until late into the 

simulation, followed by rapid late growth from an over-sized storage pool. While this 

approach provides the optimal solution in terms of final biomass size, the brute-force 

optimisation behaviour has not been observed in plant growth. While plant storage can be 

substantial, with extremes of up to 300 mg/g dry matter (Martínez-Vilalta et al., 2016) they 

do not reach storage pool sizes seen in the simulations (for a maximum of 31%, 41% and 

70% of the plant biomass for the OCT, MPC and Brute-Force models, respectively).  

4.4.2 Parameter sensitivity: storage buffer response 

The most pronounced response to varying framework parameters was in the size of the 

storage concentration. The maintenance of a storage buffer can be interpreted as a 

mechanism of adaptation to stressful conditions (Sala et al., 2012; Wiley & Helliker, 2012). 

In fact, plants rarely deplete their stored carbon under stress (Adams et al., 2017; Mitchell 

et al., 2013; Wiley, 2020) and higher non-structural carbohydrate (NSC) concentrations can 

be associated with survival (Kitajima, 1994; Kobe, 1997; Piper & Paula, 2020; Wiley & 

Helliker, 2012). In fact, carbon storage buffers can be large enough to replenish an 

individual’s foliage several times (Gholz & Cropper Jr., 1991; Hoch et al., 2003; Würth et al., 

2005).  

The storage buffer differed between different framework parameters, much as plant 

NSC concentration can vary largely between individuals (e.g., Bansal & Germino, 2010; Hao 

et al., 2021), species (e.g., Aguadé et al., 2015; Furze et al., 2019; Han et al., 2020; Tixier et 

al., 2020), and biomes (Martínez-Vilalta et al., 2016). However, differences between NSC 

patterns have yet to be conclusively linked to physical and functional traits, which often 

provide a context in which individuals and species can be compared (e.g., Chave et al., 2009; 

Osnas et al., 2013; Reich, 2014). For example, wood density, potential size or growth rate 

were not related to plant NSC concentration in a study across tropical rainfall gradients 

(Signori-Müller et al., 2021). Moreover, in a synthesis of drought-tolerance Adams et al., 
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(2017) found that while there is some correlation between NSC values and hydraulic traits 

those results may not be significant for all species.  

In the Control Framework, variation in NSC concentration can be clearly attributed to 

control parameters. When the time window size is increased, the plant must store enough 

carbon to survive a longer period, thereby increasing the required carbon storage 

concentration with the time window size. On the other hand, when memory is 

implemented, the prediction of optimal behaviour is based on a larger amount of 

information about the current rainfall pattern. However, these parameters (prediction time 

window, memory length) do not have a clear link with known physiological traits and can be 

more associated with perceived risks rather than purely physical characteristics. As such, 

studies of hormone response to stress (Mund et al., 2020; Sopory, 2019, pp. 238–239), in 

addition to physiological responses, may shed additional light into variation between plant 

carbon storage.  

4.4.3 Limitations 

Several biological processes have been simplified or omitted in this work, any of which could 

have affected the behaviour of the plant. Importantly, the processes represented in the 

model were simplified through the use of linear relationships. In nature, these processes are 

often non-linear and their behaviour changes in response to resource abundance. For 

example, photosynthesis slows with decreased water availability (Fatichi et al., 2014) 

instead of stopping abruptly as I have implemented in this model. Moreover, photosynthesis 

is not always linearly dependent on biomass size. Instead, as the size of the plant and the 

number of leaves increase, the plant begins to shade itself, thereby, decreasing the 

efficiency of photosynthesis per leaf (Ackerly, 1999) which results in asymptotic behaviour. 

Respiration can also be represented in more complex and realistic ways. For instance, 

respiration has two components: maintenance respiration which ensures the survival of the 

plant (Amthor, 1984), and growth respiration, which provides energy to support the growth 

of new cells (Johnson, 1990). Considering non-linear dynamics, such as the ones described 

above, is important because it may change the optimal response of the plant. Asymptotic 

limits on resource allocation processes may lead to very different results in the calculated 

optimal trajectory. As the plant grows, the marginal return of photosynthesis will decrease, 
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while the marginal cost will increase due to higher respiration. Under such circumstances 

the optimal behaviour may be to stop growing in a non-linear model. In contrast, in the 

linear model used in this study, the cost-benefit ratio to growing new biomass does not 

depend on the plant size and, therefore, the plant is more likely to grow bigger in such a 

model.  

Moreover, only short timescales were evaluated in this work and post-stress 

recovery was not examined. It was further assumed that the fitness goal remained 

unchanged throughout the simulation. However, the carbon allocation strategy of a plant 

may change over the lifetime of an individual (Niinemets, 2010) or through lagged 

responses (e.g., “drought memory”, Alves et al., 2020). Moreover, plants can experience 

long-term effects of stress by decreased growth (Huang et al., 2018) or in some cases 

delayed mortality (Trugman et al., 2018). To fully evaluate the mechanisms of plant carbon 

storage response to stress, different timescales would have to be considered.  

4.5 Conclusions and future work 

The model and framework introduced in this chapter presents a new way of capturing 

allocation trajectories in plant response to stochastic stress. When applied to a problem of a 

plant subjected to drought, the MPC framework predicted a growth trajectory that imitated 

an optimal control solution while maintaining flexibility in the response to changing 

conditions. The iterative nature of the computation led to the maintenance of a storage 

buffer to account for the continuously increasing time required for plant survival. The 

strategy and subsequently the storage buffer which resulted from the simulated behaviour 

was sensitive to the length of the forecast used in daily predictions as well as the 

implementation of memory which decreased sensitivity to daily fluctuations in 

environmental conditions. 

This work serves as the proof of concept for the Control Framework as a 

methodology of examining the acclimation of carbon storage and other processes to 

changing environments. Beyond addressing the limitations stated above, future work can 

involve exploring more complex plant models and submodules to evaluate the methodology 

in more realistic scenarios. Crucial to this endeavour would be access to carefully collected 

experimental data that can assist defining what are realistic results. In parallel, the 
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framework itself can be improved by implementing new modules such as “learning”, 

updating the model to further aid with acclimation, and examining sensitivity to longer-term 

adaptation. Further work on comparing optimisation models and MPC, especially in the 

conditions under which plant responses to stress begin to vary or diverge between species 

and individuals. However, using the modelling framework presented in this chapter, these 

extensions are achievable and would greatly aid in expanding our understanding of plant 

climate change acclimation. 
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5 Synthesis and Future Directions 
This thesis study has explored the growth–storage trade-offs involved in the storage of 

carbon by trees under stress. I have used a range of modelling approaches in order to better 

understand the optimal storage utilisation trajectory (OSUT). First, I investigated the OSUT 

for a tree subjected to a range of drought regimes using two life history strategies: 

prioritisation of growth (MaxM) and prioritisation of storage (MaxS). Second, I explored the 

growth and survival under these alternative growth and storage strategies of a community 

of trees living in stochastic (random) environments. Third, I investigated the emergence of 

an OSUT from a feedback-and-feedforward framework in a stochastic environment. This 

approach provided a novel way to model optimal carbon storage by highlighting the 

importance of capturing the trade-offs between growth and storage while considering the 

effects of a more realistic and stochastic environment on the process of carbon storage. 

5.1 Shape of the optimal storage utilisation trajectory: recommendations for 
the representation of carbon storage in models 

I have observed that patterns of allocation of carbon storage in plants can represent an 

active, rather than passive, storage utilisation strategy by mathematically characterising the 

shape of the OSUT under stress (Chapter 2). The OSUT is comprised of three stages: (1) an 

initial period when soil moisture is high and growth is prioritised; (2) an intermediate period 

when the plant switches to prioritising carbon storage and thus no growth occurs; and (3) a 

stress period when photosynthesis is inhibited and thus key metabolic activities such as 

respiration must be supported with stored carbon. Crucially, I have found that the OSUT can 

be characterised by the switch point when the plant stops growing (𝑡'). This occurs before 

the plant becomes fully stressed and upon switching from growth, the plant must prioritise 

accumulating carbon in its storage pool. This pattern of growth followed by storage is 

commonly observed in plants during drought (Körner, 2015; Mitchell, O’Grady, Tissue, et al., 

2014), but it is typically associated with passive storage, where storage accumulation begins 

due to sink limitation rather than a storage-prioritising strategy (Körner, 2003). However, 

this same pattern of growth and storage also emerges from the optimisation analysis in 

which storing carbon prior to full stress is necessary for plant survival. The implication from 
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this work is, therefore, that the mechanism of carbon storage is more likely to be an active 

process than a passive one.  

Using the growth–storage patterns characterised in Chapter 2, I have determined 

how alternative growth versus storage strategies performed over the long term in a 

community of plants living in an environment subjected to stress in a stochastic way 

(Chapter 3). Using a gap model, I simulated the growth of plants along a spectrum of two 

carbon storage–related traits, the carbon utilisation rate and the growth-storage time 

switch period under different stress conditions. Notably, while optimisation modelling can 

provide insight into the evolution of carbon storage strategies, the success of these 

strategies was found to be further dependent on ecological parameters, specifically the 

randomness of the environment and the competitive effect of other plants. Moreover, the 

key factor found to determine the outcome of competition was differential mortality rates. 

A short growth period reduced the chance of survival during a stress period and a fast 

carbon utilisation rate reduced the minimum level of the annual carbon storage pool during 

the growth period, thereby reducing the shade tolerance of an individual tree. Furthermore, 

as stress stochasticity increased, plants with a more conservative storage strategy (slower 

growth and a shorter growing period) began to dominate the community in terms of both 

number and overall size. They became more dominant in the environment, highlighting the 

importance of having the right storage strategy for surviving stochastic stress.  

This work lays the foundation for realistically modelling the effects of climate change 

on plant communities across time and space by modelling carbon storage processes. 

However, this study represents the initial stages in exploring the utility of mathematical 

characterisation of carbon storage for plant communities. As such, future work on modelling 

carbon storage should consider the following two recommendations: 

1. Carbon storage should be modelled as an active (not passive) process and carbon allocation 

models should consider the effects of competition between carbon pools. 

2. The variation in active carbon storage allocation strategies can be modelled using two 

parameters: i) a switch time point, which captures phenological elements of the process and 

can indicate a shift between the growth and storage dynamics in plants; and ii) a carbon 

utilisation parameter, which reflects the rate at which stored carbon is used to support plant 

growth. 
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Having established the need to model realistic environments, in Chapter 4 I have 

addressed the assumptions that the environment is static and that a plant is locally adapted 

to a single, predictable environmental niche (as defined in Chapter 2). Here, I formulated a 

framework that approximates a long-term optimal response and allows acclimatisation to 

occur over time even in stochastic conditions. By using the method of model predictive 

control (MPC), I iteratively computed short-term optimal trajectories for allocating carbon 

storage and partially solved each trajectory before reassessment under new conditions. This 

approach successfully approximated the optimal dynamics model developed in Chapter 2. 

Crucially, the new computed strategy has shown that a substantial carbon storage buffer 

was created based on the repeated re-evaluation of current and predicted stochastic 

environmental conditions to ensure optimal plant performance, thereby simulating 

acclimatisation. Therefore, I recommend adopting the MPC methodology to examine the 

realistic acclimatisation responses of plants in scenarios of high randomness such as the 

future environments expected under climate change and global heating.  

5.2 Linking carbon storage strategies with plant functional traits and other 
processes 

The work presented here highlights potential future lines of inquiry into linking carbon 

storage processes in plants with other functional traits. In general, the relationships 

between carbohydrate storage in plants and their functional traits are yet to be properly 

characterised, with plant experiments so far yielding conflicting accounts of these 

relationships. This study foregrounds the importance of considering carbon storage 

strategies as time-sensitive processes. Because of the time element, in evaluating a carbon 

storage strategy the relationship between carbon storage and functional traits is unlikely to 

encompass a straightforward reactive process and, therefore, unlikely to be adequately 

characterisable through correlations between parameters at a single time point. Instead, an 

explicit mathematical modelling analysis is essential and experimental researchers should be 

guided by robust mathematical frameworks in order to successfully interpret their data with 

respect to time dynamics. Given that an optimal storage strategy may be identified by both 

the time of switching between storage and growth, and the rate of carbon storage 

utilisation when the plant is growing, I recommend that these two traits form the basis for 

experimental exploration of the relationships between plant functional traits.  
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First, the relationship between the switch time and hydraulic traits should be 

explored. The optimal strategy adopted by plants under drought (Chapter 2) relates to the 

carbon safety margin, which in turn relates to the hydraulic safety margin (Mencuccini, 

2014; Mitchell, O’Grady, Tissue, et al., 2014). The relationship between hydraulic traits and 

carbon storage concentrations is unclear; for example, normalised non-structural 

carbohydrate (NSC) concentrations are related to embolism resistance in gymnosperms, but 

not in angiosperms (Adams et al., 2017). A key insight from this study is that if a carbon 

storage strategy is defined by the factors that affect the switch between growth and storage 

in addition to carbohydrate storage concentration, then the relationship between hydraulic 

traits and carbon storage may be more important than previously thought.  

Second, the time of switching from growth to storage is key to plant tolerance to 

abiotic stress. It may be that stress is mitigated by an earlier switch and, crucially, this 

phenological event can be identified in experiments, creating a link between mathematical 

modelling and experimental science. As Chapter 3 has shown, the two storage traits (the 

time of switching between storage and growth, and the rate of carbon storage utilisation) 

are key to influencing plant tolerance to abiotic stress. I showed that this is due to higher 

carbon concentrations during the processes of annual photosynthesis inhibition (e.g. winter) 

and during growth, which leads to shade tolerance. Carbon storage can have a positive 

effect on plant survival during stress and other studies have shown that shade-tolerant 

plants have higher NSC concentrations than shade-intolerant upper-canopy plants (Atkinson 

et al., 2014), while plants that live in more stressful (e.g. drier) environments may stop 

growth sooner (Kagawa et al., 2003). However, attributes such as shade tolerance can also 

be attributed to other traits such as nitrogen content or specific leaf area (Abbasi et al., 

2021; Reich, 2014). Therefore, further experimental studies that explore the relationships 

between the traits of carbon storage strategies and recognised physiological traits will be 

important in modelling the carbon behaviour of plants during stress events. 

This research arc has been further explored in Chapter 4, where the focus shifted 

from characterising functional traits to considering ‘behavioural’ traits, specifically two traits 

related to the ‘memory’ and ‘predictive capacity’ of a plant to assess future stress risks. 

While these concepts do not have physiological equivalents, I showed that they may be 
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proxies for risk perception and response. Chapter 4 has illustrated the value of exploring 

physiological relationships in order to enable us to characterise the thresholds for plant 

stress response. For example, by extending the predictive capacity of a modelled plant, the 

plant’s optimal storage buffer size may increase, in turn allowing the plant to survive longer 

and more intense stress periods. In contrast, a plant with a lower predictive capacity may be 

categorisable as risk-taking, relying on a steady supply of carbon to survive, making it more 

susceptible to stress. Exploration of how plants sense risk through investigating thresholds 

of hormonal and signalling responses to stress may, therefore, be a worthwhile pursuit in 

order to identify traits related to the acclimatisation of carbon storage strategies. With 

better understanding of such acclimatisation mechanisms and traits, we can improve the 

modelling and forecasting of how diverse communities of plants respond to the rapidly 

changing conditions enforced by anthropogenic climate change.  

5.3 Representing plant function as an emergent control process 

A key development in this thesis study is, therefore, consideration of whether a plant only 

reacts to immediate stimuli or can actually map – and follow – a trajectory as defined by the 

OSUT. In Chapters 2 and 3, the OSUT was assumed to be the effect of a locally adapted 

optimal process. However, the adaptation of traits is a continuous process with a 

continuously shifting landscape of parameters (Dieckmann et al., 2006). As such, what is 

considered optimal must also shift along with changing internal and external factors. 

Therefore, in Chapter 4 I have considered the requirements and mechanisms for 

acclimatisation regarded as a process which searches for approximately optimal solutions. 

Interpretation of the methods used in Chapter 4 requires a shift away from using an 

anthropomorphic approach to terminology, implying the existence of a neurological system 

capable of making decisions, towards engaging with counterparts from computer and 

complexity science which focus on the emergent complex behaviour of simple subsystems.  

While the control framework used in Chapter 4 employs the use of prediction and 

evaluation mechanisms, these are defined here based on computer science terminology and 

do not require that plants have some kind of centralised processing system capable of 

forecasting. In biological literature it has generally been assumed that the capacity to 

forecast conditions requires an individual to possess a centralised nervous system and a 
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‘perceptual forecasting machine’ (e.g., a brain); this machine uses information from 

‘sensors’ and ‘regulators’ to decide how the ‘actuator’ components behave (e.g., 

Bridgeman, 1995). In other words, forecasting has been assumed to require a system that 

can perceive the environment (e.g., the eyes sensing danger), compute potential behaviours 

(e.g. the brain assessing risk and evaluating possible courses of action) and then enact 

behaviour in response (e.g., the limbs making the body jump away from the danger). 

However, this anthropocentric view confuses machines with consciousness and ignores the 

highly complex feedback-loop systems with multiple sensor, regulator and actuator 

components that exist throughout nature (Wiener, 2019). For example, consider the 

molecular fuel of plasticity: in spite of every cell hosting the same DNA sequence, protein 

production is performed at the cellular level and independently by each cell. Gene 

expression regulates this production, responding to cellular environmental cues as well as 

metadata such as the developmental identity of the cell and associated tissue. These 

elements work in concert to optimise the cell’s behaviour in relation to the perceived 

environment, leading to the observation of computation-like behaviour at the molecular 

level (Eagleman, 2020 and the examples within; Lyon, 2015; Mitchell & Pilpel, 2011; 

Tagkopoulos et al., 2008; Wu et al., 2009). This capacity of the cell to conduct complex tasks 

when the individual parts of the system cannot be considered or predicted in isolation from 

each other, but only in terms of their collected behaviour and relationships, is defined as 

emergent behaviour. Emergence is a central thesis in the biomathematics field of systems 

biology and was a major conceptual hindrance for biologists (Lazebnik, 2002) until the 

development of systems biology. 

Plants operate without a nervous system, but do display emergent behaviour that 

seems to coordinate the responses of a plant and its components to present and future 

stimuli. While it is unarguable that some plant processes are purely reactive to 

environmental stimuli (e.g. photoperiod and temperature; Gauzere et al., 2019), the 

coordination of processes across the entirety of the plant may also require complex 

responses in relation to the expected abiotic conditions and behaviours of other organisms 

(Post, 2019, pp. 47–48). Models of optimal plant behaviour predict that when plant 

components (e.g., shoots and roots) are distributed and optimised independently, the 
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whole plant will show emergent optimal behaviour despite the relative independence of the 

subsystems (Ledder et al., 2020). Moreover, plant components such as branches may 

display independent allocation strategies under non-stressed conditions but begin to display 

coordinated allocation responses when stressed (Obeso, 2002; Sprugel et al., 1991). It 

follows, therefore, that mechanisms such as prediction and evaluation, as used in Chapter 4, 

may be emergent from the collective behaviour of subsystems which imitate coordination 

mechanisms normally attributed to systems that do have nervous systems and can make 

decisions. In turn, these internal models of coordination allow the plant to adopt long-term, 

‘predictive’, goal-seeking behaviour capable of acclimatising to future risk. Therefore, 

progressing from traditional optimisation techniques and adopting methods such as MPC 

that can imitate this coordination process may help us in addressing the challenges of 

modelling plant responses to an increasingly variable climate.
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